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Abstract

A tree T in an edge-colored (vertex-colored) graph H is called a monochromatic
(vertez-monochromatic) tree if all the edges (internal vertices) of T" have the same
color. For S C V(H), a monochromatic (vertex-monochromatic) S-tree in H is
a monochromatic (vertex-monochromatic) tree of H containing the vertices of S.
For a connected graph G and a given integer k with 2 < k < |V(G)|, the k-
monochromatic index mzy(G) (k-monochromatic vertez-index mvxy(G)) of G is
the maximum number of colors needed such that for each subset S C V(G) of k
vertices, there exists a monochromatic (vertex-monochromatic) S-tree. For k = 2,
Caro and Yuster showed that mec(G) = mza(G) = |E(G)| — |V(G)| + 2 for many
graphs, but it is not true in general. In this paper, we show that for k > 3, ma(G) =
|E(G)| — |V(G)| + 2 holds for any connected graph G, completely determining the
value. However, for the vertex-version mvzy(G) things will change tremendously.
We show that for a given connected graph G, and a positive integer L with L <
|[V(G)]|, to decide whether mvzi(G) > L is NP-complete for each integer k such
that 2 < k < |V(G)|. Finally, we obtain some Nordhaus-Gaddum-type results for
the k-monochromatic vertex-index.

Keywords: k-monochromatic index, k-monochromatic vertex-index, NP-complete,
Nordhaus-Gaddum-type result.
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1 Introduction

All graphs considered in this paper are simple, finite, undirected and connected. We follow
the terminology and notation of Bondy and Murty [1]. A path in an edge-colored graph H

is a monochromatic path if all the edges of the path are colored with the same color. The
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graph H is called monochromatically connected if for any two vertices of H there exists
a monochromatic path connecting them. An edge-coloring of H is a monochromatically
connecting coloring (MC-coloring) if it makes H monochromatically connected. How
colorful can an MC-coloring be? This question is the natural opposite of the well-studied
problem of rainbow connecting coloring [4, 6, 10, 12, 13], where in the latter we seek
to find an edge-coloring with minimum number of colors so that there is a rainbow path
joining any two vertices. For a connected graph G, the monochromatic connection number
of G, denoted by mc(G), is the maximum number of colors that are needed in order to
make G' monochromatically connected. An extremal MC-coloring is an MC-coloring that
uses mc(G) colors. These above concepts were introduced by Caro and Yuster in [5].
They obtained some nontrivial lower and upper bounds for mc(G). Later, Cai et al. in

[2] obtained two kinds of Erdés-Gallai-type results for me(G).

In this paper, we generalize the concept of a monochromatic path to a monochromatic
tree. In this way, we can give the monochromatic connection number a natural generaliza-
tion. A tree T in an edge-colored graph H is called a monochromatic tree if all the edges
of T have the same color. For an S C V(H), a monochromatic S-tree in H is a monochro-
matic tree of H containing the vertices of S. Given an integer k with 2 < k < |V(H)|,
the graph H is called k-monochromatically connected if for any set S of k vertices of H,
there exists a monochromatic S-tree in H. For a connected graph G and a given integer
k such that 2 < k < |V(G)|, the k-monochromatic index mzy(G) of G is the maximum
number of colors that are needed in order to make G k-monochromatically connected. An
edge-coloring of G is called a k-monochromatically connecting coloring (M Xy-coloring)
if it makes G k-monochromatically connected. An extremal M Xj-coloring is an M Xj-
coloring that uses may(G) colors. When k = 2, we have mxo(G) = me(G). Obviously,
we have ma |y ) (G) < ... <mas(G) < me(G).

There is a vertex version of the monochromatic connection number, which was intro-
duced by Cai et al. in [3]. A path in a vertex-colored graph H is a vertez-monochromatic
path if its internal vertices are colored with the same color. The graph H is called
monochromatically vertex-connected, if for any two vertices of H there exists a vertex-
monochromatic path connecting them. For a connected graph G, the monochromatic
vertez-connection number of G, denoted by mvc(G), is the maximum number of colors that
are needed in order to make G monochromatically vertex-connected. A vertex-coloring

of G is a monochromatically vertex-connecting coloring (MVC-coloring) if it makes G



monochromatically vertex-connected. An extremal MVC-coloring is an MVC-coloring
that uses mvc(G) colors. This k-monochromatic index can also have a natural vertex
version. A tree T in a vertex-colored graph H is called a vertez-monochromatic tree if
its internal vertices have the same color. For an S C V(H), a vertez-monochromatic
S-tree in H is a vertex-monochromatic tree of H containing the vertices of S. Given
an integer k with 2 < k < |V(H)|, the graph H is called k-monochromatically vertez-
connected if for any set S of k vertices of H, there exists a vertex-monochromatic S-tree
in H. For a connected graph G' and a given integer k such that 2 < k < |V(G)], the
k-monochromatic vertex-index mvxy(G) of G is the maximum number of colors that are
needed in order to make GG k-monochromatically vertex-connected. A vertex-coloring of G
is called a k-monochromatically vertez-connecting coloring (MV Xy-coloring) if it makes
G k-monochromatically vertex-connected. An extremal MV Xy-coloring is an MV X-
coloring that uses mvz(G) colors. When k = 2, we have mvzo(G) = moc(G). Obviously,

we have muz |y e (G) < ... < muas(G) < mue(G).

A Nordhaus-Gaddum-type result is a (tight) lower or upper bound on the sum or
product of the values of a parameter for a graph and its complement. The Nordhaus-
Gaddum-type is given because Nordhaus and Gaddum [14] first established the following
inequalities for the chromatic numbers of graphs: If G and G are complementary graphs
on n vertices whose chromatic numbers are x(G) and x(G), respectively, then 2y/n <
x(G) +x(G) < n+1. Since then, many analogous inequalities of other graph parameters
are concerned, such as domination number [9], Wiener index and some other chemical

indices [15], rainbow connection number [7], and so on.

For k = 2, Caro and Yuster [5] showed that mc(G) = mao(G) = |E(G)| — |[V(G)| + 2
for many graphs, but it is not true in general. In this paper, we show that for £ > 3,
mz(G) = |E(G)| — |V(G)| + 2 holds for any connected graph G, completely determining
the value. However, for the vertex-version moxy(G) things will change tremendously. We
show that for a given a connected graph G, and a positive integer L with L < |[V(G)], to
decide whether mvzy(G) > L is NP-complete for each integer k such that 2 < k < [V(G)].
Finally, we obtain some Nordhaus-Gaddum-type results for the k-monochromatic vertex-

index.



2 Determining mx;(G)

Let G be a connected graph with n vertices and m edges. In this section, we mainly
study mxi(G) for each k with 3 < k < n. A straightforward lower bound for mxz(G)
is m —n + 2. Just give the edges of a spanning tree of G with one color, and give each
of the remaining edges a distinct new color. A property of an extremal M Xj-coloring is
that the set of edges of each color induces a tree for any k& with 3 < k£ < n. In fact, if an
M X-coloring contains a monochromatic cycle, we can choose any edge of this cycle and
give it a new color while still maintaining an M X-coloring; if the subgraph induced by
the edges with a given color is disconnected, then we can give the edges of one component
with a new color while still maintaining an M Xj-coloring for each k£ with 3 < k < n.
Then, we use color tree T, to denote the tree consisting of the edges colored with c¢. The
color ¢ is called nontrivial if T, has at least two edges; otherwise c is called trivial. We
now introduce the definition of a simple extremal M X,-coloring, which is generalized of

a simple extremal MC-coloring defined in [5].

Call an extremal M Xj-coloring simple for a k with 3 < k < n, if for any two nontrivial
colors ¢ and d, the corresponding T, and Ty intersect in at most one vertex. The following

lemma shows that a simple extremal M X-coloring always exists.

Lemma 2.1. Every connected graph G on n vertices has a simple extremal M Xy-coloring

for each k with 3 < k <n.

Proof. Let f be an extremal M Xj-coloring with the most number of trivial colors for
each k with 3 < k < n. Suppose f is not simple. By contradiction, assume that ¢ and
d are two nontrivial colors such that 7. and T; contain p common vertices with p > 2.
Let H = T, UT,;. Then, H is connected. Moreover, |V(H)| = |V(T.)| + |V(Ta)| — p,
and |E(H)| = |[V(T.)| + |[V(Ty)| — 2. Now color a spanning tree of H with ¢, and give
each of the remaining p — 1 edges of H distinct new colors. The new coloring is also an
M Xj-coloring for each k& with 3 < k < n. If p > 2, then the new coloring uses more
colors than f, contradicting that f is extremal. If p = 2, then the new coloring uses the
same number of colors as f but more trivial colors, contracting that f contains the most

number of trivial colors. O

By using this lemma, we can completely determine mxy(G) for each k with 3 < k < n.



Theorem 2.2. Let G be a connected graph with n vertices and m edges, then mzy(G) =

m —n—+ 2 for each k with 3 < k <n.

Proof. Let f be a simple extremal M X3-coloring of G. Choose a set S of 3 vertices of G.
Then, there exists a monochromatic S-tree in G. Since |S| = 3, then this monochromatic
S-tree is contained in some nontrivial color tree T,. Suppose that the color tree T, is not
a spanning tree of G. Choose v ¢ V(T,), and {u,w} C V(T.). Let S’ = {v,u, w}. Then,
there exists a monochromatic S’-tree in G. Since |S’| = 3, then this monochromatic S’-
tree is contained in some nontrivial color tree T,;. Moreover, since v ¢ V(T.), then ¢ # d.
But now, {u,w} € V(T.) NV (Ty), contracting that f is simple. Then, we have that T is
a spanning tree of G. Hence, m —n+ 2 < mz,(G) < ... < ma3(G) < m —n+ 2. The

theorem thus follows. O]

3 Hardness results for computing mvz(G)

Though we can completely determine the value of mzy(G) for each k with 3 < k < n,
for the vertex version it is difficult to compute mvzy(G) for any k with 2 < k£ < n.
In this section, we will show that given a connected graph G = (V, E), and a positive
integer L with L < |V, to decide whether mvxy(G) > L is NP-complete for each k with
2<Ek<|V].

We first introduce some definitions. A subset D C V(G) is a dominating set of G if
every vertex not in D has a neighbor in D. If the subgraph induced by D is connected, then
D is called a connected dominating set. The dominating number v(G), and the connected
dominating number ~.(G), are the cardinalities of a minimum dominating set, and a
minimum connected dominating set, respectively. A graph G has a connected dominating
set if and only if G is connected. The problem of computing v.(G) is equivalent to the
problem of finding a spanning tree with the most number of leaves, because a vertex
subset is a connected dominating set if and only if its complement is contained in the set
of leaves of a spanning tree. Let G be a connected graph on n vertices where n > 3. Note
that the problem of computing muvz,(G) is also equivalent to the problem of finding a
spanning tree with the most number of leaves. In fact, let T),,. be a spanning tree of
G with the most number of leaves, and (7},,,) be the number of leaves in T),,,. Then,

moux,(G) = (Thaee) + 1 =n —7.(G) + 1 for n > 3. For convenience, suppose that all the



graphs in this section have at least 3 vertices.

Now we introduce a useful lemma. For convenience, call a tree T with vertex-color c

if the internal vertices of T" are colored with c.

Lemma 3.1. Let G be a connected graph on n wvertices with a cut-vertex vg. Then,

muc(G) = I(Ty) + 1, where Ty is a spanning tree of G with the most number of leaves.

Proof. Let f be an extremal MV C-coloring of G. Suppose that f(v) is the color of the
vertex v, and f(vg) = c¢. Let Gy, Gy, . .., G, be the components of G — vy where p > 2. We
construct a spanning tree Ty of G with vertex-color ¢ as follows. At first, choose any pair
(vi,v5) € (V(Gy),V(G;))(i # 7). Since vy is a cut-vertex, then there must exist a {v;, v;}-
path P containing vy with vertex-color c. Initially, set T, = P. Secondly, choose another
pair (vs, v:) € (V(Gs), V(Gy))(s # t) such that v, is not in 7. Similarly, there must exist a
{vs, v }-path P’ containing vy with vertex-color c. Let  be the first vertex of P’ that is also
in Ty, and y be the last vertex of P’ that is also in Ty. Then, reset Ty = ToUv, Pz Uy P v,.
Thus, T is still a tree with vertex-color ¢ now. Repeat the above process until all vertices
are contained in Ty. Finally, we get a spanning tree Ty of G with vertex-color ¢, thus, we
have mvc(G) < I(Tp) + 1 now. However, mvc(G) > mvz,(G) = (Thae) + 1, where g
is a spanning tree of G with the most number of leaves. Then, we have I(Ty) = (T naz)-

Hence, it follows that mve(G) = I(Tp) + 1. O

Corollary 3.2. Let G be a connected graph on n wvertices with a cut-vertexr. Then,
moxg(G) = (Thae) + 1 for each k with 2 < k < n, where Ty, i a spanning tree of

G with the most number of leaves.

Now, we show that the following Problem 0 is NP-complete.
Problem 0: k-monochromatic vertex-index
Instance: Connected graph G = (V, E), a positive integer L with L < |V/|.
Question: Deciding whether mvz,(G) > L for each k with 2 < k < |V].

In order to prove the NP-completeness of Problem 0, we first introduce the following

problems.
Problem 1: Dominating Set.

Instance: Graph G = (V, E), a positive integer K < |V/|.



Question: Deciding wether there is a dominating set of size K or less.
Problem 2: CDS of a connected graph containing a cut-vertex.

Instance: Connected graph G = (V, E) with a cut-vertex, a positive integer K with
K <|V|.

Question: Deciding wether there is a connected dominating set of size K or less.

The NP-completeness of Problem 1 is a known result in [8]. In the following, we will

reduce Problem 1 to Problem 2 polynomially.

Lemma 3.3. Problem 1 < Problem 2.

Proof. Given a graph G with vertex set V' = {v1,vs,...,v,} and edge set E, we construct

a graph G’ = (V', E') as follows:

V' =V U{ug,ug, ... un} Uz, y}
E' =FEUE;UE,
Ey ={u;v :if v = v; or v;v is an edge in G for 1 < i < n}

Ey ={zu; : 1 <i<n}U{zy}

It is easy to check that G’ is connected with a cut-vertex x. In the following, we will show
that G contains a dominating set of size K or less if and only if G’ contains a connected
dominating set of size K + 1 or less. On one hand, suppose w.l.o.g that G’ contains a
dominating set D = {vy,vq,..., 0}, t < K. Let D' = {uy,us,...,u;} U{x}. Then, it is
easy to check that D’ is a connected dominating set of G' and |D’| < K +1. On the other
hand, suppose that G’ contains a connected dominating set D’ of size K + 1 or less. Since
x is a cut-vertex of G/, then x € D’. For 1 <i <mn, if u; € D' or v; € D', then put v; in
D. Tt is easy to check that D is a dominating set of G and |D| < K. O

Theorem 3.4. Problem 0 is NP-complete.

Proof. Let G = (V, E) be a connected graph with a cut-vertex, and K a positive integer
with K < |V]. Recall that ~.(G) < K if and only if mvzy(G) = (Thee) +1 = |V| —
Ye(G)+1 > |V]|=K+1 for 2 < k < |V|, where T,,,, is a spanning tree of G with the most
leaves by Corollary 3.2. Then, given a connected graph G = (V, E) with a cut-vertex,
and a positive integer L with L < |V, to decide whether mvzx,(G) > L is NP-complete
for each k with 2 < k < |V| by Lemma 3.3. Moreover, Problem 0 is NP-complete. O

7



Fig. 1: The graph F} with 7.(F}) = 7.(F}) = 3.

Corollary 3.5. Let G be a connected graph on n vertices. Then, computing mvzy(G) is

NP-hard for each k with 2 < k < n.

4 Nordhaus-Gaddum-type results for mvx;

Suppose that both G and G are connected graphs on n vertices. Now for n = 4, we have
G = G = Py. It is easy to check that muvaxy,(Py) +muzy(Py) = 6 for each k with 2 < k < 4.

For k = 2, Cai et al. [3] proved that for n > 5, n+ 3 < mvc(G) + mve(G) < 2n, and the
bounds are sharp. Then, in the following we suppose that n > 5 and 3 < k < n.

We first consider the lower bound of mvzy(G) + mvxy(G) for each k with 3 < k < n.

Now we introduce some useful lemmas.

Lemma 4.1. [11] If both G and G are connected graphs on n vertices, then 7.(G) +
Y(G) = n + 1 if and only if G is the cycle Cs. Moreover, if G is not Cs, then v.(G) +
Y.(G) < n with equality if and only if {G,G} = {C,,C,} forn > 6, or {G,G} = {P,, P,}

forn >4, or {G,G} = {Fy, F\}, where Fy is the graph represented in Fig.1.

Lemma 4.2. [3] Let C,, be a cycle on n vertices. Then,

n n<bh
mvC(C”):{?, n>6

Recall that a vertex-monochromatic S-tree is a vertex-monochromatic tree containing
S. For convenience, if the vertex-monochromatic S-tree is a star (with the center v),
we use S-star (S,-star) to denote this vertex-monochromatic S-tree. For two subsets
UW CV(G), we use U ~ W to denote that any vertex in U is adjacent with any vertex
in W. If U = {z}, we use x ~ W instead of {z} ~ W.



From Lemma 4.1, we have mvzy(C,) + mvry(C,) > mvz,(C,) + mvw,(C,) = 2n —
(7(Cp) +7e(CR)) +2 > n+2 for n > 6 and k with 3 < k < n. It is easy to check
that mvxy(C,) = 3 for n > 6 and k with 3 < & < n by Lemma 4.2. Then, we have

mvzg(Cy) > n—1for n > 6 and k with 3 < k£ < n. Now we introduce the following

lemma.

Lemma 4.3. For n > 6, if n is odd, then mvz,(C,) = n for k with 3 < k < ”T_l, and
mua(Cn) = n— 1 for k with 222 < k < n; if n = 4t, then mvzy(C,) = n for k with
3<k< -1, and mvxy(C,) = n — 1 for k with 5 < k < n; if n = 4t + 2, then

muz(Cn) =n for k with 3 <k <2, and mvz(C,) =n—1 for k with 2 +1 < k < n.

Proof. Suppose that V(C,,) = {vg, v1,...,v,-1}, and the clockwise permutation sequence
is vy, V1, ..., Up_1,00 in C,. Let f be an extremal MV Xj-coloring of C,, for each k with
3 < k < n. Suppose first that n is odd. Let S = {v; : ¢ =0 or 1 (mod 4)}. Then, |S| =
"T“. It is easy to check that there exists no S-star in C,,. Then, we have mvr(C,) < n
for £ with ”T“ < k < n. Hence, mvz(C,) = n — 1 for k with ”T“ < k <n. For k
with 3 <k < "T_l, we will show that mvw(C,) = n. In other words, for any set S of k
vertices of C,,, there exists an S-star in C,. We first show that mvxk(C’_n) for k = "T’l
By contradiction, assume that mvzy(C,) < n for k = ”T’l Suppose that S is a set of k

vertices such that there exists no S-star in C,. Note that the vertex-induced subgraph

P Py, v;, } where {v;,, v, } denote

’L)iQUj27 ttt Uip'l)j

C,[S] consists of some disjoint paths {P,, o, ,
the ends of Pviqvjq such that the vertex-sequence v;, to v;, along Pviqvjq is in clockwise

direction in C), for each ¢ with 1 < ¢ <p.
Claim 1: Each Pviqvjq contains at least 2 vertices for each ¢ with 1 < ¢ < p.

Proof of Claim 1: By contradiction, assume that P,

Since { P,

v, = v for some v € V(C,).

[

.5 Py, v;, } are disjoint paths in Cy, then v ~ S\ {v} in C,,. Hence,

i1V 7 VigUjg 7 * °

there exists an S,-star in C,,, a contradiction.

Consider {Pvi1 ->Pv¢pvjp} in C,. Suppose w.l.o.g that the clockwise per-

Ujp 7 = VigUjp o * *

mutation sequence of these paths is Pvilvjl , P,,Q%, el Pvipvjp, Pvipﬂvjpﬂ = P'Uilvjl in C),.
For any two successive paths Pviqvjq and P, R where 1 < ¢ < p, we have the following
q q

claim.

Claim 2: There are at most 2 vertices between {v;,,v; ., } in clockwise direction in

C,, for each ¢ with 1 < ¢ < p.



Proof of Claim 2: By contradiction, assume that there are at least 3 vertices
{vr—1, vy, vry1}, where the subscript is subject to modulo n, between {v;,, v;,,, } in clock-
wise direction in C,,. Now, we have v, ~ S in C,,. Then, there exists an Sy,-star in C,, a

contradiction.

If n =4t + 1, then k = 2t. Now, we have p < [£] = ¢ by Claim 1. Then, |V(C,)| <
k+2p < n—1 < n by Claim 2, a contradiction. If n = 4¢+3, then k = 2t4+1. Now, we have
p < |£] = ¢ by Claim 1. Then, |V(C,)| < k+2p < n—2 < n by Claim 2, a contradiction.

Hence, if n is odd, then n = m’uan—l(Cn) < oomozy(Cr) < moxs(Cr,) < n. The proof

for the case n = 4t or n = 4¢ + 2 is similar. We omit their details. OJ

Theorem 4.4. Suppose that both G and G are connected graphs on n vertices. Forn =5,

mozg(G) + muag(G) > 6 for k with 3 <k <5. Forn =6, mvz,(G) + mvz(G) > 8 for
k with 3 <k < 6. Forn > 7, if n is odd, then mvz(G) +mvzi(G) > n+ 3 for k with
3<k< "Tfl, and mvr,(G) + muz(G) > n + 2 for k with "TH < k <n;ifn=4t, then
muay(G) +moxg(G) > n+3 for k with 3 < k < % —1, and mvay,(G) +moxg(G) > n+2
for k with 2 < k < n; if n = 4t + 2, then mvzy(G) + moz(G) > n+ 3 for k with
3< k<5, and muzk(G) + muz(G) > n + 2 for k with 5+ 1<k <n. Moreover, all

the above bounds are sharp.

Proof. For n =5, if G = G = C5, then it is easy to check that 2muvz,(Cs) = 6 for k with
3 <k <5;if G # Cs, then mury(G) + mury(G) > 7 for k with 3 < k < 5 by Lemma
4.1. For n > 6, we have mvay(G) + mozg(G) > mvz,(G) + mvz,(G) = n + 2 for k
with 3 < k < n with equality if and only if {G, G} = {C,,C,}, or {G,G} = {P,, P}, or
{G,G} = {F\, F\}, where F| is the graph represented in Fig.1 by Lemma 4.1. For n > 6,
it is easy to check that mvzg(C,) = mvag(F,) = 3 for k with 3 <k <n by Lemma 4.2.
Then, we have mvzy(P,) + mvzg(P,) > mvx(C,) + muay(C,) for k with 3 < k < n.
Furthermore, for n = 6, it is easy to check that mvwy(Fy) + mvz,(Fy) = 8 for k with

3 < k < 6. Thus, the theorem follows for n > 6 by Lemma 4.3. O]

Now we consider the upper bound of mvr,(G)+mvx,(G) for each k with [§] <k <n.
For convenience, we use dg(v) and Ng(v) to denote the degree and the neighborhood of
a vertex v in G, respectively. For any two vertices u,v C V(G), we use dg(u, v) to denote
the distance between u and v in G. Note that a straightforward upper bound of mvzy(G)
is that mvzi(G) < mue(G) < n — diam(G) + 2 where diam(G) is the diameter of G for

each k with 3 < k < n. Next we introduce some useful lemmas.
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Lemma 4.5. Let K,,, », be a complete bipartite graph such that n = n; +ng, and ny,ngy >

2. Let G = Ky, n, — e, where e is an edge of Ky, n,. Then, mvx,(G)+mozg(G) = 2n—2
for3 <k <n.

Proof. 1t is easy to check that diam(G) = 3, and diam(G) = 3. Then, we have mvc(G) +
muc(G) < 2n — 2. Tt is also easy to check that both G' and G contain a double star as a

spanning tree. Then, we have mvx,(G) + mvx,(G) > 2n — 2. Hence, the lemma follows

by the fact that mvz,(G) < ... <moxs(G) < muc(G). O

Lemma 4.6. If k = [%], then mvay(G) + mvz,(G) < 2n —2 forn > 5.

Proof. Let V(G) = {v1,vy,...,v,}. Since G is connected, then A(G) < n — 2. Suppose
first that mvx, = n, and f is an extremal MV X-coloring of G. Then, for any set S of
k vertices of G, there exists an S-star in G. This also implies that A(G) > k — 1.

Case 1: A(G) >n—k+ 1.

Suppose w.lo.g that dg(v;) = A(G), and Ng(v1) = {ve,v3,...,0a41}. Let S =
{v1,va49, .., Un_1,0,}. Since |S| =n — A(G) < k —1 < k, then there exists an S,-star
in G. Moreover, since v; % {vat2,...,V-1,V,} in G, then v € Ng(v;). Suppose w.l.o.g
that v = vy. Then, we have dg(vi,v2) > 3. Since dg(vi,v2) > 3, then mor(G) <
n — diam(G) + 2 < n — 1. Suppose mvry(G) = n — 1. Then, diam(G) = 3. Let g
be an extremal MV X-coloring of G. Note that if G is k-monochromatically vertex-
connected, it is also monochromatically vertex-connected. Since mvzy(G) = n — 1, then
there exists a vertex-monochromatic path P = viayv, of length 3 in G such that = €
{va42, .-y Un_1,0n}, and y € Ng(v1) \ {ve}. Suppose w.lo.g that P = vjvai20a110s9.
This also implies that vay; = {vy,va40} in G. Let S = {v1,va41,0A49,...,0,} NOW.
Since |S’| = n — A(G) +1 < k, then there exists an S/,-star in G. Moreover, since
v1 % {vat2, .., Vn_1,Un} and vary ® {v2,va40} in G, then v € Ng(vy) \ {va, va11}-
Now, we have dg(vy,v') = 3. Since mvzy(G) = n — 1, then {va11,va42} are the only
two vertices with the same color in G. But now, since v’ = {va41,va42} in G, then there
exists no vertex-monochromatic path connecting {v;,v’} in G, a contradiction. Hence,

we have that movx,(G) < n — 2, and mvxg(G) + mvz,(G) < 2n — 2.
Case 2: A(G) <n—k.

Since k = [§], and A(G) > k — 1, then [§] =1 < A(G) <n —[3].
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If n is odd, then A(G) = % = k — 1. Suppose w.l.o.g that da(v1) = A(G), and
Ng(v1) = {va,v3,...,vr}. Let S = {v1,v41,...,0,}. Since |S| =n —k+1 =k, then
there exists an S,-star in G. Moreover, since vy % {Ugy1,...,U,_1,0,} in G, then v is not

in S. But now, dg(v) > |S| =k > A(G), a contradiction.

If n is even, then A(G) = § — 1 or §. Suppose w.lo.g that dg(vi) = A(G), and
Ng(v1) = {v2,v3,...,va41}. HA(G) =5 —1=4k—1, thenlet S = {v1,Ve41,..., -1}
Since |S| = n — k = k, then there exists an S,-star in G. Moreover, since v;
{Vk41,...,vp—1} in G, then v is not in S. But now, dg(v) > |S| = k > A(G), a contradic-
tion. If A(G) = § =k, then let S = {v1, V442,...,v,}. Since [S| =n — k = k, then there
exists an S,-star in G. Moreover, since vy » {vUki2,...,0,_1,0,} in G, then v € Ng(vy).
Suppose w.l.o.g that v = vg. Then, dg(ve) = k = A(G), and Ng(ve) = {v1, Vgya, .., s}
If k> 4, then let S" = {v1, v2, Ugt1, Vg2 }. Since |S’| < k, then there exists an S!,-star in
G. But now, since vy # vj49, and vy » v 1 in G, then v' € Ng(v1) N Ng(vz) = 0, a con-
tradiction. If £ = 3, then n = 6. If {vq, v3,v4} ~ {v5,v6} in G, then G contains a complete
bipartite spanning subgraph. But now, G is not connected, a contradiction. So, suppose
w.l.o.g that vy » v5 in G. Similarly consider S’ = {vy, v3,v5},{v1, v, v5}, {v1, 04,06}, and
{vs,vs5,v6}, respectively. Then, we will have that vs ~ vs, v3 ~ vy, v4 ~ vg, and vs ~ vg in
G, respectively. But now, G is contained in a cycle Cs. Then, mvzs(G) < mvzs(Cg) = 3.

So, for n = 6 we have mvz3(G) + mvzs3(G) <n+3 < 2n — 2.

Suppose w.l.o.g that mvz,(G) < n — 1, and mvz,(G) < n — 1, respectively. Thus, we

also have mvzg(G) + moz,(G) < 2n — 2. O

Theorem 4.7. Suppose that both G and G are connected graphs on n > 5 vertices. Then,

for k with [3] < k < n, we have that mvry(G) + mvzg(G) < 2n — 2, and this bound is
sharp.

Proof. For k with [§] < k < n, we have mvzy(G) < muvz[s) < 2n — 2 by Lemma 4.6.
From Lemma 4.5, this bound is sharp for k£ with [§] <k <n. O
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