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Abstract

A tree T in an edge-colored (vertex-colored) graph H is called a monochromatic
(vertex-monochromatic) tree if all the edges (internal vertices) of T have the same
color. For S ⊆ V (H), a monochromatic (vertex-monochromatic) S-tree in H is
a monochromatic (vertex-monochromatic) tree of H containing the vertices of S.
For a connected graph G and a given integer k with 2 ≤ k ≤ |V (G)|, the k-
monochromatic index mxk(G) (k-monochromatic vertex-index mvxk(G)) of G is
the maximum number of colors needed such that for each subset S ⊆ V (G) of k
vertices, there exists a monochromatic (vertex-monochromatic) S-tree. For k = 2,
Caro and Yuster showed that mc(G) = mx2(G) = |E(G)| − |V (G)| + 2 for many
graphs, but it is not true in general. In this paper, we show that for k ≥ 3, mxk(G) =
|E(G)| − |V (G)|+ 2 holds for any connected graph G, completely determining the
value. However, for the vertex-version mvxk(G) things will change tremendously.
We show that for a given connected graph G, and a positive integer L with L ≤
|V (G)|, to decide whether mvxk(G) ≥ L is NP-complete for each integer k such
that 2 ≤ k ≤ |V (G)|. Finally, we obtain some Nordhaus-Gaddum-type results for
the k-monochromatic vertex-index.

Keywords: k-monochromatic index, k-monochromatic vertex-index, NP-complete,
Nordhaus-Gaddum-type result.
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1 Introduction

All graphs considered in this paper are simple, finite, undirected and connected. We follow

the terminology and notation of Bondy and Murty [1]. A path in an edge-colored graph H

is a monochromatic path if all the edges of the path are colored with the same color. The
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graph H is called monochromatically connected if for any two vertices of H there exists

a monochromatic path connecting them. An edge-coloring of H is a monochromatically

connecting coloring (MC-coloring) if it makes H monochromatically connected. How

colorful can an MC-coloring be? This question is the natural opposite of the well-studied

problem of rainbow connecting coloring [4, 6, 10, 12, 13], where in the latter we seek

to find an edge-coloring with minimum number of colors so that there is a rainbow path

joining any two vertices. For a connected graph G, the monochromatic connection number

of G, denoted by mc(G), is the maximum number of colors that are needed in order to

make G monochromatically connected. An extremal MC-coloring is an MC-coloring that

uses mc(G) colors. These above concepts were introduced by Caro and Yuster in [5].

They obtained some nontrivial lower and upper bounds for mc(G). Later, Cai et al. in

[2] obtained two kinds of Erdős-Gallai-type results for mc(G).

In this paper, we generalize the concept of a monochromatic path to a monochromatic

tree. In this way, we can give the monochromatic connection number a natural generaliza-

tion. A tree T in an edge-colored graph H is called a monochromatic tree if all the edges

of T have the same color. For an S ⊆ V (H), a monochromatic S-tree in H is a monochro-

matic tree of H containing the vertices of S. Given an integer k with 2 ≤ k ≤ |V (H)|,
the graph H is called k-monochromatically connected if for any set S of k vertices of H,

there exists a monochromatic S-tree in H. For a connected graph G and a given integer

k such that 2 ≤ k ≤ |V (G)|, the k-monochromatic index mxk(G) of G is the maximum

number of colors that are needed in order to make G k-monochromatically connected. An

edge-coloring of G is called a k-monochromatically connecting coloring (MXk-coloring)

if it makes G k-monochromatically connected. An extremal MXk-coloring is an MXk-

coloring that uses mxk(G) colors. When k = 2, we have mx2(G) = mc(G). Obviously,

we have mx|V (G)|(G) ≤ . . . ≤ mx3(G) ≤ mc(G).

There is a vertex version of the monochromatic connection number, which was intro-

duced by Cai et al. in [3]. A path in a vertex-colored graph H is a vertex-monochromatic

path if its internal vertices are colored with the same color. The graph H is called

monochromatically vertex-connected, if for any two vertices of H there exists a vertex-

monochromatic path connecting them. For a connected graph G, the monochromatic

vertex-connection number ofG, denoted bymvc(G), is the maximum number of colors that

are needed in order to make G monochromatically vertex-connected. A vertex-coloring

of G is a monochromatically vertex-connecting coloring (MVC-coloring) if it makes G
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monochromatically vertex-connected. An extremal MVC-coloring is an MVC-coloring

that uses mvc(G) colors. This k-monochromatic index can also have a natural vertex

version. A tree T in a vertex-colored graph H is called a vertex-monochromatic tree if

its internal vertices have the same color. For an S ⊆ V (H), a vertex-monochromatic

S-tree in H is a vertex-monochromatic tree of H containing the vertices of S. Given

an integer k with 2 ≤ k ≤ |V (H)|, the graph H is called k-monochromatically vertex-

connected if for any set S of k vertices of H, there exists a vertex-monochromatic S-tree

in H. For a connected graph G and a given integer k such that 2 ≤ k ≤ |V (G)|, the

k-monochromatic vertex-index mvxk(G) of G is the maximum number of colors that are

needed in order to make G k-monochromatically vertex-connected. A vertex-coloring of G

is called a k-monochromatically vertex-connecting coloring (MVXk-coloring) if it makes

G k-monochromatically vertex-connected. An extremal MVXk-coloring is an MVXk-

coloring that uses mvxk(G) colors. When k = 2, we have mvx2(G) = mvc(G). Obviously,

we have mvx|V (G)|(G) ≤ . . . ≤ mvx3(G) ≤ mvc(G).

A Nordhaus-Gaddum-type result is a (tight) lower or upper bound on the sum or

product of the values of a parameter for a graph and its complement. The Nordhaus-

Gaddum-type is given because Nordhaus and Gaddum [14] first established the following

inequalities for the chromatic numbers of graphs: If G and G are complementary graphs

on n vertices whose chromatic numbers are χ(G) and χ(G), respectively, then 2
√
n ≤

χ(G) +χ(G) ≤ n+ 1. Since then, many analogous inequalities of other graph parameters

are concerned, such as domination number [9], Wiener index and some other chemical

indices [15], rainbow connection number [7], and so on.

For k = 2, Caro and Yuster [5] showed that mc(G) = mx2(G) = |E(G)| − |V (G)|+ 2

for many graphs, but it is not true in general. In this paper, we show that for k ≥ 3,

mxk(G) = |E(G)| − |V (G)|+ 2 holds for any connected graph G, completely determining

the value. However, for the vertex-version mvxk(G) things will change tremendously. We

show that for a given a connected graph G, and a positive integer L with L ≤ |V (G)|, to

decide whether mvxk(G) ≥ L is NP-complete for each integer k such that 2 ≤ k ≤ |V (G)|.
Finally, we obtain some Nordhaus-Gaddum-type results for the k-monochromatic vertex-

index.
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2 Determining mxk(G)

Let G be a connected graph with n vertices and m edges. In this section, we mainly

study mxk(G) for each k with 3 ≤ k ≤ n. A straightforward lower bound for mxk(G)

is m − n + 2. Just give the edges of a spanning tree of G with one color, and give each

of the remaining edges a distinct new color. A property of an extremal MXk-coloring is

that the set of edges of each color induces a tree for any k with 3 ≤ k ≤ n. In fact, if an

MXk-coloring contains a monochromatic cycle, we can choose any edge of this cycle and

give it a new color while still maintaining an MXk-coloring; if the subgraph induced by

the edges with a given color is disconnected, then we can give the edges of one component

with a new color while still maintaining an MXk-coloring for each k with 3 ≤ k ≤ n.

Then, we use color tree Tc to denote the tree consisting of the edges colored with c. The

color c is called nontrivial if Tc has at least two edges; otherwise c is called trivial. We

now introduce the definition of a simple extremal MXk-coloring, which is generalized of

a simple extremal MC-coloring defined in [5].

Call an extremal MXk-coloring simple for a k with 3 ≤ k ≤ n, if for any two nontrivial

colors c and d, the corresponding Tc and Td intersect in at most one vertex. The following

lemma shows that a simple extremal MXk-coloring always exists.

Lemma 2.1. Every connected graph G on n vertices has a simple extremal MXk-coloring

for each k with 3 ≤ k ≤ n.

Proof. Let f be an extremal MXk-coloring with the most number of trivial colors for

each k with 3 ≤ k ≤ n. Suppose f is not simple. By contradiction, assume that c and

d are two nontrivial colors such that Tc and Td contain p common vertices with p ≥ 2.

Let H = Tc ∪ Td. Then, H is connected. Moreover, |V (H)| = |V (Tc)| + |V (Td)| − p,

and |E(H)| = |V (Tc)| + |V (Td)| − 2. Now color a spanning tree of H with c, and give

each of the remaining p − 1 edges of H distinct new colors. The new coloring is also an

MXk-coloring for each k with 3 ≤ k ≤ n. If p > 2, then the new coloring uses more

colors than f , contradicting that f is extremal. If p = 2, then the new coloring uses the

same number of colors as f but more trivial colors, contracting that f contains the most

number of trivial colors.

By using this lemma, we can completely determine mxk(G) for each k with 3 ≤ k ≤ n.
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Theorem 2.2. Let G be a connected graph with n vertices and m edges, then mxk(G) =

m− n+ 2 for each k with 3 ≤ k ≤ n.

Proof. Let f be a simple extremal MX3-coloring of G. Choose a set S of 3 vertices of G.

Then, there exists a monochromatic S-tree in G. Since |S| = 3, then this monochromatic

S-tree is contained in some nontrivial color tree Tc. Suppose that the color tree Tc is not

a spanning tree of G. Choose v /∈ V (Tc), and {u,w} ⊆ V (Tc). Let S ′ = {v, u, w}. Then,

there exists a monochromatic S ′-tree in G. Since |S ′| = 3, then this monochromatic S ′-

tree is contained in some nontrivial color tree Td. Moreover, since v /∈ V (Tc), then c 6= d.

But now, {u,w} ∈ V (Tc) ∩ V (Td), contracting that f is simple. Then, we have that Tc is

a spanning tree of G. Hence, m − n + 2 ≤ mxn(G) ≤ . . . ≤ mx3(G) ≤ m − n + 2. The

theorem thus follows.

3 Hardness results for computing mvxk(G)

Though we can completely determine the value of mxk(G) for each k with 3 ≤ k ≤ n,

for the vertex version it is difficult to compute mvxk(G) for any k with 2 ≤ k ≤ n.

In this section, we will show that given a connected graph G = (V,E), and a positive

integer L with L ≤ |V |, to decide whether mvxk(G) ≥ L is NP-complete for each k with

2 ≤ k ≤ |V |.

We first introduce some definitions. A subset D ⊆ V (G) is a dominating set of G if

every vertex not inD has a neighbor inD. If the subgraph induced byD is connected, then

D is called a connected dominating set. The dominating number γ(G), and the connected

dominating number γc(G), are the cardinalities of a minimum dominating set, and a

minimum connected dominating set, respectively. A graph G has a connected dominating

set if and only if G is connected. The problem of computing γc(G) is equivalent to the

problem of finding a spanning tree with the most number of leaves, because a vertex

subset is a connected dominating set if and only if its complement is contained in the set

of leaves of a spanning tree. Let G be a connected graph on n vertices where n ≥ 3. Note

that the problem of computing mvxn(G) is also equivalent to the problem of finding a

spanning tree with the most number of leaves. In fact, let Tmax be a spanning tree of

G with the most number of leaves, and l(Tmax) be the number of leaves in Tmax. Then,

mvxn(G) = l(Tmax) + 1 = n− γc(G) + 1 for n ≥ 3. For convenience, suppose that all the
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graphs in this section have at least 3 vertices.

Now we introduce a useful lemma. For convenience, call a tree T with vertex-color c

if the internal vertices of T are colored with c.

Lemma 3.1. Let G be a connected graph on n vertices with a cut-vertex v0. Then,

mvc(G) = l(T0) + 1, where T0 is a spanning tree of G with the most number of leaves.

Proof. Let f be an extremal MVC-coloring of G. Suppose that f(v) is the color of the

vertex v, and f(v0) = c. Let G1, G2, . . . , Gp be the components of G−v0 where p ≥ 2. We

construct a spanning tree T0 of G with vertex-color c as follows. At first, choose any pair

(vi, vj) ∈ (V (Gi), V (Gj))(i 6= j). Since v0 is a cut-vertex, then there must exist a {vi, vj}-
path P containing v0 with vertex-color c. Initially, set T0 = P . Secondly, choose another

pair (vs, vt) ∈ (V (Gs), V (Gt))(s 6= t) such that vs is not in T0. Similarly, there must exist a

{vs, vt}-path P ′ containing v0 with vertex-color c. Let x be the first vertex of P ′ that is also

in T0, and y be the last vertex of P ′ that is also in T0. Then, reset T0 = T0∪vsP ′x∪yP ′vt.
Thus, T0 is still a tree with vertex-color c now. Repeat the above process until all vertices

are contained in T0. Finally, we get a spanning tree T0 of G with vertex-color c, thus, we

have mvc(G) ≤ l(T0) + 1 now. However, mvc(G) ≥ mvxn(G) = l(Tmax) + 1, where Tmax

is a spanning tree of G with the most number of leaves. Then, we have l(T0) = l(Tmax).

Hence, it follows that mvc(G) = l(T0) + 1.

Corollary 3.2. Let G be a connected graph on n vertices with a cut-vertex. Then,

mvxk(G) = l(Tmax) + 1 for each k with 2 ≤ k ≤ n, where Tmax is a spanning tree of

G with the most number of leaves.

Now, we show that the following Problem 0 is NP-complete.

Problem 0: k-monochromatic vertex-index

Instance: Connected graph G = (V,E), a positive integer L with L ≤ |V |.

Question: Deciding whether mvxk(G) ≥ L for each k with 2 ≤ k ≤ |V |.

In order to prove the NP-completeness of Problem 0, we first introduce the following

problems.

Problem 1: Dominating Set.

Instance: Graph G = (V,E), a positive integer K ≤ |V |.
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Question: Deciding wether there is a dominating set of size K or less.

Problem 2: CDS of a connected graph containing a cut-vertex.

Instance: Connected graph G = (V,E) with a cut-vertex, a positive integer K with

K ≤ |V |.

Question: Deciding wether there is a connected dominating set of size K or less.

The NP-completeness of Problem 1 is a known result in [8]. In the following, we will

reduce Problem 1 to Problem 2 polynomially.

Lemma 3.3. Problem 1 � Problem 2.

Proof. Given a graph G with vertex set V = {v1, v2, . . . , vn} and edge set E, we construct

a graph G′ = (V ′, E ′) as follows:

V ′ =V ∪ {u1, u2, . . . , un} ∪ {x, y}

E ′ =E ∪ E1 ∪ E2

E1 ={uiv : if v = vi or viv is an edge in G for 1 ≤ i ≤ n}

E2 ={xui : 1 ≤ i ≤ n} ∪ {xy}

It is easy to check that G′ is connected with a cut-vertex x. In the following, we will show

that G contains a dominating set of size K or less if and only if G′ contains a connected

dominating set of size K + 1 or less. On one hand, suppose w.l.o.g that G contains a

dominating set D = {v1, v2, . . . , vt}, t ≤ K. Let D′ = {u1, u2, . . . , ut} ∪ {x}. Then, it is

easy to check that D′ is a connected dominating set of G′ and |D′| ≤ K+ 1. On the other

hand, suppose that G′ contains a connected dominating set D′ of size K+ 1 or less. Since

x is a cut-vertex of G′, then x ∈ D′. For 1 ≤ i ≤ n, if ui ∈ D′ or vi ∈ D′, then put vi in

D. It is easy to check that D is a dominating set of G and |D| ≤ K.

Theorem 3.4. Problem 0 is NP-complete.

Proof. Let G = (V,E) be a connected graph with a cut-vertex, and K a positive integer

with K ≤ |V |. Recall that γc(G) ≤ K if and only if mvxk(G) = l(Tmax) + 1 = |V | −
γc(G)+1 ≥ |V |−K+1 for 2 ≤ k ≤ |V |, where Tmax is a spanning tree of G with the most

leaves by Corollary 3.2. Then, given a connected graph G = (V,E) with a cut-vertex,

and a positive integer L with L ≤ |V |, to decide whether mvxk(G) ≥ L is NP-complete

for each k with 2 ≤ k ≤ |V | by Lemma 3.3. Moreover, Problem 0 is NP-complete.
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Fig. 1: The graph F1 with γc(F1) = γc(F1) = 3.

Corollary 3.5. Let G be a connected graph on n vertices. Then, computing mvxk(G) is

NP-hard for each k with 2 ≤ k ≤ n.

4 Nordhaus-Gaddum-type results for mvxk

Suppose that both G and G are connected graphs on n vertices. Now for n = 4, we have

G = G = P4. It is easy to check that mvxk(P4)+mvxk(P4) = 6 for each k with 2 ≤ k ≤ 4.

For k = 2, Cai et al. [3] proved that for n ≥ 5, n+ 3 ≤ mvc(G) +mvc(G) ≤ 2n, and the

bounds are sharp. Then, in the following we suppose that n ≥ 5 and 3 ≤ k ≤ n.

We first consider the lower bound of mvxk(G) +mvxk(G) for each k with 3 ≤ k ≤ n.

Now we introduce some useful lemmas.

Lemma 4.1. [11] If both G and G are connected graphs on n vertices, then γc(G) +

γc(G) = n + 1 if and only if G is the cycle C5. Moreover, if G is not C5, then γc(G) +

γc(G) ≤ n with equality if and only if {G,G} = {Cn, Cn} for n ≥ 6, or {G,G} = {Pn, Pn}
for n ≥ 4, or {G,G} = {F1, F1}, where F1 is the graph represented in Fig.1.

Lemma 4.2. [3] Let Cn be a cycle on n vertices. Then,

mvc(Cn) =

{
n n ≤ 5

3 n ≥ 6.

Recall that a vertex-monochromatic S-tree is a vertex-monochromatic tree containing

S. For convenience, if the vertex-monochromatic S-tree is a star (with the center v),

we use S-star (Sv-star) to denote this vertex-monochromatic S-tree. For two subsets

U,W ⊆ V (G), we use U ∼ W to denote that any vertex in U is adjacent with any vertex

in W . If U = {x}, we use x ∼ W instead of {x} ∼ W .
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From Lemma 4.1, we have mvxk(Cn) + mvxk(Cn) ≥ mvxn(Cn) + mvxn(Cn) = 2n −
(γc(Cn) + γc(Cn)) + 2 ≥ n + 2 for n ≥ 6 and k with 3 ≤ k ≤ n. It is easy to check

that mvxk(Cn) = 3 for n ≥ 6 and k with 3 ≤ k ≤ n by Lemma 4.2. Then, we have

mvxk(Cn) ≥ n − 1 for n ≥ 6 and k with 3 ≤ k ≤ n. Now we introduce the following

lemma.

Lemma 4.3. For n ≥ 6, if n is odd, then mvxk(Cn) = n for k with 3 ≤ k ≤ n−1
2
, and

mvxk(Cn) = n − 1 for k with n+1
2
≤ k ≤ n; if n = 4t, then mvxk(Cn) = n for k with

3 ≤ k ≤ n
2
− 1, and mvxk(Cn) = n − 1 for k with n

2
≤ k ≤ n; if n = 4t + 2, then

mvxk(Cn) = n for k with 3 ≤ k ≤ n
2
, and mvxk(Cn) = n− 1 for k with n

2
+ 1 ≤ k ≤ n.

Proof. Suppose that V (Cn) = {v0, v1, . . . , vn−1}, and the clockwise permutation sequence

is v0, v1, . . . , vn−1, v0 in Cn. Let f be an extremal MVXk-coloring of Cn for each k with

3 ≤ k ≤ n. Suppose first that n is odd. Let S = {vi : i ≡ 0 or 1 (mod 4)}. Then, |S| =
n+1

2
. It is easy to check that there exists no S-star in Cn. Then, we have mvxk(Cn) < n

for k with n+1
2
≤ k ≤ n. Hence, mvxk(Cn) = n − 1 for k with n+1

2
≤ k ≤ n. For k

with 3 ≤ k ≤ n−1
2

, we will show that mvxk(Cn) = n. In other words, for any set S of k

vertices of Cn, there exists an S-star in Cn. We first show that mvxk(Cn) for k = n−1
2

.

By contradiction, assume that mvxk(Cn) < n for k = n−1
2

. Suppose that S is a set of k

vertices such that there exists no S-star in Cn. Note that the vertex-induced subgraph

Cn[S] consists of some disjoint paths {Pvi1vj1
, Pvi2vj2

, . . . , Pvipvjp
} where {viq , vjq} denote

the ends of Pviqvjq
such that the vertex-sequence viq to vjq along Pviqvjq

is in clockwise

direction in Cn for each q with 1 ≤ q ≤ p.

Claim 1: Each Pviqvjq
contains at least 2 vertices for each q with 1 ≤ q ≤ p.

Proof of Claim 1: By contradiction, assume that Pviqvjq
= v for some v ∈ V (Cn).

Since {Pvi1vj1
, Pvi2vj2

, . . . , Pvipvjp
} are disjoint paths in Cn, then v ∼ S \{v} in Cn. Hence,

there exists an Sv-star in Cn, a contradiction.

Consider {Pvi1vj1
, Pvi2vj2

, . . . , Pvipvjp
} in Cn. Suppose w.l.o.g that the clockwise per-

mutation sequence of these paths is Pvi1vj1
, Pvi2vj2

, . . . , Pvipvjp
, Pvip+1

vjp+1
= Pvi1vj1

in Cn.

For any two successive paths Pviqvjq
and Pviq+1

vjq+1
where 1 ≤ q ≤ p, we have the following

claim.

Claim 2: There are at most 2 vertices between {vjq , viq+1} in clockwise direction in

Cn for each q with 1 ≤ q ≤ p.
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Proof of Claim 2: By contradiction, assume that there are at least 3 vertices

{vr−1, vr, vr+1}, where the subscript is subject to modulo n, between {vjq , viq+1} in clock-

wise direction in Cn. Now, we have vr ∼ S in Cn. Then, there exists an Svr -star in Cn, a

contradiction.

If n = 4t + 1, then k = 2t. Now, we have p ≤ bk
2
c = t by Claim 1. Then, |V (Cn)| ≤

k+2p ≤ n−1 < n by Claim 2, a contradiction. If n = 4t+3, then k = 2t+1. Now, we have

p ≤ bk
2
c = t by Claim 1. Then, |V (Cn)| ≤ k+2p ≤ n−2 < n by Claim 2, a contradiction.

Hence, if n is odd, then n = mvxn−1
2

(Cn) ≤ . . .mvx4(Cn) ≤ mvx3(Cn) ≤ n. The proof

for the case n = 4t or n = 4t+ 2 is similar. We omit their details.

Theorem 4.4. Suppose that both G and G are connected graphs on n vertices. For n = 5,

mvxk(G) +mvxk(G) ≥ 6 for k with 3 ≤ k ≤ 5. For n = 6, mvxk(G) +mvxk(G) ≥ 8 for

k with 3 ≤ k ≤ 6. For n ≥ 7, if n is odd, then mvxk(G) + mvxk(G) ≥ n + 3 for k with

3 ≤ k ≤ n−1
2
, and mvxk(G) + mvxk(G) ≥ n + 2 for k with n+1

2
≤ k ≤ n; if n = 4t, then

mvxk(G) +mvxk(G) ≥ n+ 3 for k with 3 ≤ k ≤ n
2
− 1, and mvxk(G) +mvxk(G) ≥ n+ 2

for k with n
2
≤ k ≤ n; if n = 4t + 2, then mvxk(G) + mvxk(G) ≥ n + 3 for k with

3 ≤ k ≤ n
2
, and mvxk(G) + mvxk(G) ≥ n + 2 for k with n

2
+ 1 ≤ k ≤ n. Moreover, all

the above bounds are sharp.

Proof. For n = 5, if G = G = C5, then it is easy to check that 2mvxk(C5) = 6 for k with

3 ≤ k ≤ 5; if G 6= C5, then mvxk(G) + mvxk(G) ≥ 7 for k with 3 ≤ k ≤ 5 by Lemma

4.1. For n ≥ 6, we have mvxk(G) + mvxk(G) ≥ mvxn(G) + mvxn(G) = n + 2 for k

with 3 ≤ k ≤ n with equality if and only if {G,G} = {Cn, Cn}, or {G,G} = {Pn, Pn}, or

{G,G} = {F1, F1}, where F1 is the graph represented in Fig.1 by Lemma 4.1. For n ≥ 6,

it is easy to check that mvxk(Cn) = mvxk(Pn) = 3 for k with 3 ≤ k ≤ n by Lemma 4.2.

Then, we have mvxk(Pn) + mvxk(Pn) ≥ mvxk(Cn) + mvxk(Cn) for k with 3 ≤ k ≤ n.

Furthermore, for n = 6, it is easy to check that mvxk(F1) + mvxk(F1) = 8 for k with

3 ≤ k ≤ 6. Thus, the theorem follows for n ≥ 6 by Lemma 4.3.

Now we consider the upper bound of mvxk(G)+mvxk(G) for each k with dn
2
e ≤ k ≤ n.

For convenience, we use dG(v) and NG(v) to denote the degree and the neighborhood of

a vertex v in G, respectively. For any two vertices u, v ⊆ V (G), we use dG(u, v) to denote

the distance between u and v in G. Note that a straightforward upper bound of mvxk(G)

is that mvxk(G) ≤ mvc(G) ≤ n − diam(G) + 2 where diam(G) is the diameter of G for

each k with 3 ≤ k ≤ n. Next we introduce some useful lemmas.
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Lemma 4.5. Let Kn1,n2 be a complete bipartite graph such that n = n1 +n2, and n1, n2 ≥
2. Let G = Kn1,n2 − e, where e is an edge of Kn1,n2. Then, mvxk(G) +mvxk(G) = 2n− 2

for 3 ≤ k ≤ n.

Proof. It is easy to check that diam(G) = 3, and diam(G) = 3. Then, we have mvc(G) +

mvc(G) ≤ 2n− 2. It is also easy to check that both G and G contain a double star as a

spanning tree. Then, we have mvxn(G) +mvxn(G) ≥ 2n− 2. Hence, the lemma follows

by the fact that mvxn(G) ≤ . . . ≤ mvx3(G) ≤ mvc(G).

Lemma 4.6. If k = dn
2
e, then mvxk(G) +mvxk(G) ≤ 2n− 2 for n ≥ 5.

Proof. Let V (G) = {v1, v2, . . . , vn}. Since G is connected, then ∆(G) ≤ n − 2. Suppose

first that mvxk = n, and f is an extremal MVXk-coloring of G. Then, for any set S of

k vertices of G, there exists an S-star in G. This also implies that ∆(G) ≥ k − 1.

Case 1: ∆(G) ≥ n− k + 1.

Suppose w.l.o.g that dG(v1) = ∆(G), and NG(v1) = {v2, v3, . . . , v∆+1}. Let S =

{v1, v∆+2, . . . , vn−1, vn}. Since |S| = n −∆(G) ≤ k − 1 < k, then there exists an Sv-star

in G. Moreover, since v1 � {v∆+2, . . . , vn−1, vn} in G, then v ∈ NG(v1). Suppose w.l.o.g

that v = v2. Then, we have dG(v1, v2) ≥ 3. Since dG(v1, v2) ≥ 3, then mvxk(G) ≤
n − diam(G) + 2 ≤ n − 1. Suppose mvxk(G) = n − 1. Then, diam(G) = 3. Let g

be an extremal MVXk-coloring of G. Note that if G is k-monochromatically vertex-

connected, it is also monochromatically vertex-connected. Since mvxk(G) = n− 1, then

there exists a vertex-monochromatic path P = v1xyv2 of length 3 in G such that x ∈
{v∆+2, . . . , vn−1, vn}, and y ∈ NG(v1) \ {v2}. Suppose w.l.o.g that P = v1v∆+2v∆+1v2.

This also implies that v∆+1 � {v2, v∆+2} in G. Let S ′ = {v1, v∆+1, v∆+2, . . . , vn} now.

Since |S ′| = n − ∆(G) + 1 ≤ k, then there exists an S ′v′-star in G. Moreover, since

v1 � {v∆+2, . . . , vn−1, vn} and v∆+1 � {v2, v∆+2} in G, then v′ ∈ NG(v1) \ {v2, v∆+1}.
Now, we have dG(v1, v

′) = 3. Since mvxk(G) = n − 1, then {v∆+1, v∆+2} are the only

two vertices with the same color in G. But now, since v′ � {v∆+1, v∆+2} in G, then there

exists no vertex-monochromatic path connecting {v1, v
′} in G, a contradiction. Hence,

we have that mvxk(G) ≤ n− 2, and mvxk(G) +mvxk(G) ≤ 2n− 2.

Case 2: ∆(G) ≤ n− k.

Since k = dn
2
e, and ∆(G) ≥ k − 1, then dn

2
e − 1 ≤ ∆(G) ≤ n− dn

2
e.
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If n is odd, then ∆(G) = n−1
2

= k − 1. Suppose w.l.o.g that dG(v1) = ∆(G), and

NG(v1) = {v2, v3, . . . , vk}. Let S = {v1, vk+1, . . . , vn}. Since |S| = n − k + 1 = k, then

there exists an Sv-star in G. Moreover, since v1 � {vk+1, . . . , vn−1, vn} in G, then v is not

in S. But now, dG(v) ≥ |S| = k > ∆(G), a contradiction.

If n is even, then ∆(G) = n
2
− 1 or n

2
. Suppose w.l.o.g that dG(v1) = ∆(G), and

NG(v1) = {v2, v3, . . . , v∆+1}. If ∆(G) = n
2
− 1 = k − 1, then let S = {v1, vk+1, . . . , vn−1}.

Since |S| = n − k = k, then there exists an Sv-star in G. Moreover, since v1 �
{vk+1, . . . , vn−1} in G, then v is not in S. But now, dG(v) ≥ |S| = k > ∆(G), a contradic-

tion. If ∆(G) = n
2

= k, then let S = {v1, vk+2, . . . , vn}. Since |S| = n− k = k, then there

exists an Sv-star in G. Moreover, since v1 � {vk+2, . . . , vn−1, vn} in G, then v ∈ NG(v1).

Suppose w.l.o.g that v = v2. Then, dG(v2) = k = ∆(G), and NG(v2) = {v1, vk+2, . . . , vn}.
If k ≥ 4, then let S ′ = {v1, v2, vk+1, vk+2}. Since |S ′| ≤ k, then there exists an S ′v′-star in

G. But now, since v1 � vk+2, and v2 � vk+1 in G, then v′ ∈ NG(v1) ∩NG(v2) = ∅, a con-

tradiction. If k = 3, then n = 6. If {v2, v3, v4} ∼ {v5, v6} in G, then G contains a complete

bipartite spanning subgraph. But now, G is not connected, a contradiction. So, suppose

w.l.o.g that v4 � v5 in G. Similarly consider S ′ = {v1, v3, v5},{v1, v4, v5}, {v1, v4, v6}, and

{v3, v5, v6}, respectively. Then, we will have that v3 ∼ v5, v3 ∼ v4, v4 ∼ v6, and v5 ∼ v6 in

G, respectively. But now, G is contained in a cycle C6. Then, mvx3(G) ≤ mvx3(C6) = 3.

So, for n = 6 we have mvx3(G) +mvx3(G) ≤ n+ 3 < 2n− 2.

Suppose w.l.o.g that mvxk(G) ≤ n− 1, and mvxk(G) ≤ n− 1, respectively. Thus, we

also have mvxk(G) +mvxk(G) ≤ 2n− 2.

Theorem 4.7. Suppose that both G and G are connected graphs on n ≥ 5 vertices. Then,

for k with dn
2
e ≤ k ≤ n, we have that mvxk(G) + mvxk(G) ≤ 2n − 2, and this bound is

sharp.

Proof. For k with dn
2
e ≤ k ≤ n, we have mvxk(G) ≤ mvxdn

2
e ≤ 2n − 2 by Lemma 4.6.

From Lemma 4.5, this bound is sharp for k with dn
2
e ≤ k ≤ n.
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