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Abstract

The Wiener index W (G) of a connected graph G, introduced by Wiener

in 1947, is defined as W (G) =
∑

u,v∈V (G) dG(u, v) where dG(u, v) is the

distance (length a shortest path) between the vertices u and v in G. For

S ⊆ V (G), the Steiner distance d(S) of the vertices of S, introduced by

Chartrand et al. in 1989, is the minimum size of a connected subgraph of

G whose vertex set contains S. The k-th Steiner Wiener index SWk(G)

of G is defined as SWk(G) =
∑

S⊆V (G)

|S|=k

d(S). We investigate the following

problem: Fixed a positive integer k, for what kind of positive integer w

does there exist a connected graph G (or a tree T ) of order n ≥ k such that

SWk(G) = w (or SWk(T ) = w) ? In this paper, we give some solutions to

this problem.
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1 Introduction

All graphs in this paper are assumed to be undirected, finite and simple. We

refer to [3] for graph theoretical notation and terminology not specified here.

Distance is one of basic concepts of graph theory [4]. If G is a connected graph

and u, v ∈ V (G), then the distance d(u, v) = dG(u, v) between u and v is the

length of a shortest path connecting u and v. For more details on this subject,

see [13].

The Wiener index W (G) of a connected graph G is defined by

W (G) =
∑

u,v∈V (G)

dG(u, v) .

Mathematicians have studied this graph invariant since the 1970s in [11]; for de-

tails see the surveys [10,33], the recent papers [2,7,14,15,17,20] and the references

cited therein. Information on chemical applications of the Wiener index can be

found in [27, 28].

The Steiner distance of a graph, introduced by Chartrand et al. in [6] in

1989, is a natural and nice generalization of the concept of the classical graph

distance. For a graph G = (V,E) and a set S ⊆ V of at least two vertices, an

S-Steiner tree or a Steiner tree connecting S (or simply, an S-tree) is a subgraph

T = (V ′, E ′) of G that is a tree with S ⊆ V ′. Let G be a connected graph

of order at least 2 and let S be a nonempty set of vertices of G. Then the

Steiner distance d(S) among the vertices of S (or simply the distance of S) is the

minimum size of a connected subgraph whose vertex set contains S. Note that if

H is a connected subgraph of G such that S ⊆ V (H) and |E(H)| = d(S), then

H is a tree. Clearly, d(S) = min{|E(T )| , S ⊆ V (T )}, where T is a subtree of G.

Furthermore, if S = {u, v}, then d(S) = d(u, v) is nothing new, but the classical

distance between u and v. Clearly, if |S| = k, then d(S) ≥ k−1. For more details

on Steiner distance, we refer to [1, 5, 6, 8, 13, 26].

In [23], we proposed a generalization of the Wiener index concept, using Stein-
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er distance. Thus, the k-th Steiner Wiener index SWk(G) of a connected graph

G is defined by

SWk(G) =
∑

S⊆V (G)

|S|=k

d(S) .

For k = 2, the Steiner Wiener index coincides with the ordinary Wiener index.

It is usual to consider SWk for 2 ≤ k ≤ n − 1, but the above definition implies

SW1(G) = 0 and SWn(G) = n− 1 for a connected graph G of order n. For more

details on Steiner Wiener index, we refer to [23–25].

A chemical application of SWk was recently reported in [16].

It should be noted that in the 1990s, Dankelmann et al. in [8, 9] studied

the average Steiner distance, which is related to our Steiner Wiener index via

SWk(G)/
(

n

k

)

.

The seemingly elementary question: “which natural numbers are Wiener in-

dices of graphs ?” was much investigated in the past; see [12,19,21,29,31,32]. We

now consider the analogous question for Steiner Wiener indices:

Problem. Fixed a positive integer k, for what kind of positive integer w does

there exist a connected graph G (or a tree T ) of order n ≥ k such that SWk(G) =

w (or SWk(T ) = w) ?

For k = 2, the authors have nice results in [30, 32], completely solved a con-

jecture by Lepović and Gutman [22] for trees, which states that for all but 49

positive integers w one can find a tree with Wiener index w. This is different

from our problem for trees, since here we consider graphs or trees with order n.

2 The cases k = n and k = n − 1

At first, let’s consider the case k = n.

If G is a connected graph or a tree of order n, then for k = n, SWk(G) = n−1.

Thus the following result is immediate.

3



Proposition 2.1 For a positive integer w, there exists a connected graph G or a

tree T of order n such that SWn(G) = w or SWn(T ) = w if and only if w = n−1.

For the case k = n− 1, we need the following results in [23].

Lemma 2.2 [23] Let T be a tree of order n, possessing p pendant vertices. Then

SWn−1(T ) = n(n− 1)− p

irrespective of any other structural detail of T .

Lemma 2.3 [23] Let Kn be the complete graph of order n, and let k be an integer

such that 2 ≤ k ≤ n. Then

SWk(Kn) =

(

n

k

)

(k − 1).

Lemma 2.4 [23] Let G be a connected graph of order n, and let k be an integer

such that 2 ≤ k ≤ n. Then

(

n

k

)

(k − 1) ≤ SWk(G) ≤ (k − 1)

(

n+ 1

k + 1

)

.

Moreover, the lower bound is sharp.

From the above results, we can derive the following proposition.

Proposition 2.5 For a positive integer w, there exists a connected graph G of

order n such that SWn−1(G) = w, if and only if n2 − 2n ≤ w ≤ n2 − n− 2.

Proof. By Lemma 2.4, if G is a connected graph of order n, then

n(n− 2) ≤ SWn−1(G) ≤ (n + 1)(n− 2).

Therefore, n2 − 2n ≤ w ≤ n2 − n− 2.

By Lemma 2.3, SWn−1(Kn) = n2 − 2n.
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Let T be a tree of order n with p pendant vertices with 2 ≤ p ≤ n − 1. By

Lemma 2.2, SWn−1(T ) = n2−n−p, and thus for any integer w with n2−n−(n−

1) ≤ w ≤ n2 − n− 2, there exists a tree T of order n such that SWn−1(T ) = w.

From the proof of Proposition 2.5 it follows immediately that

Proposition 2.6 For a positive integer w, there exists a tree T of order n such

that SWn−1(T ) = w if and only if n2 − 2n+ 1 ≤ w ≤ n2 − n− 2.

3 The case k = n − 2

Similarly to Lemma 2.2, we can derive the following result.

Lemma 3.1 Let T be a tree of order n, possessing p pendant vertices. Let q be

the number of vertices of degree 2 in T that are adjacent to a pendant vertex.

Then

SWn−2(T ) =
1

2

(

n3 − 2n2 + n− 2np+ 2p− 2q
)

. (3.1)

Proof. For any S ⊆ V and |S| = n − 2, let S̄ = {u, v}. If dT (u) = dT (v) = 1,

then dT (S) = n− 3, and this case contributes to SWn−2 by

∑

u,v∈S̄

dT (u)=dT (v)=1

dT (S) =

(

p

2

)

(n− 3) .

If dT (u) ≥ 2 and dT (v) ≥ 2, then dT (S) = n− 1, and this case contributes to

SWn−2 by
∑

u,v∈S̄

dT (u)≥2, dT (v)≥2

dT (S) =

(

n− p

2

)

(n− 1) .

Suppose that dT (u) = 1 and dT (v) ≥ 2. If dT (u) = 1, dT (v) = 2 and

uv ∈ E(G), then dT (S) = n − 3. If dT (u) = 1, dT (v) ≥ 3 and uv ∈ E(T ), then
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dT (S) = n − 2. If dT (u) = 1, dT (v) ≥ 2 and uv /∈ E(T ), then dT (S) = n − 2.

Therefore, this case contributes to SWn−2 by

∑

u,v∈S̄

dT (u)=1, dT (v)≥2

dT (S) =
∑

u,v∈S̄,uv∈E(T )

dT (u)=1, dT (v)=2

dT (S) +
∑

u,v∈S̄,uv∈E(T )

dT (u)=1, dT (v)≥3

dT (S) +
∑

u,v∈S̄,uv/∈E(T )

dT (u)=1, dT (v)≥2

dT (S)

= q(n− 3) + (p− q)(n− 2) + p(n− p− 1)(n− 2) .

From the above argument, we have

SWn−2(T ) =

(

p

2

)

(n− 3) +

(

n− p

2

)

(n− 1) + q(n− 3)

+ (p− q)(n− 2) + p(n− p− 1)(n− 2)

=
1

2

(

n3 − 2n2 + n− 2np+ 2p− 2q
)

.

Li et al. obtained the following sharp lower and upper bounds of SWk(T ) for

a tree T .

Lemma 3.2 [23] Let T be a tree of order n, and let k be an integer such that

2 ≤ k ≤ n. Then

(

n− 1

k − 1

)

(n− 1) ≤ SWk(T ) ≤ (k − 1)

(

n+ 1

k + 1

)

.

Moreover, among all trees of order n, the star Sn minimizes the Steiner Wiener

k-index, whereas the path Pn maximizes the Steiner Wiener k-index.

For trees, we have the following result.

Theorem 3.3 For a positive integer w, there exists a tree T of order n (n ≥ 5),

possessing p pendant vertices, such that SWn−2(T ) = w if and only if w = 1
2

(

n3−

2n2 + n− 2np+ 2p− 2q
)

, where q is the number of vertices of degree 2 in T that

are adjacent to a pendant vertex, and one of the following holds:

6



(1) 2 ≤ q ≤ ⌊n−1
2
⌋ and q ≤ p ≤ n− q − 1;

(2) q = 1 and 3 ≤ p ≤ n− 2;

(3) q = 0 and 4 ≤ p ≤ n− 1.

Proof. Suppose that w = 1
2

(

n3−2n2+n−2np+2p−2q
)

, where 0 ≤ q ≤ ⌊n−1
2
⌋,

q ≤ p ≤ n − q − 1. Let K1,p−1 be a star of order p, and let v be the center of

K1,p−1. Then K∗
1,p−1 is a graph obtained from K1,p−1 by picking up q − 1 edges

and then replacing each of them by a path of length 2. Note that K∗
1,p−1 is a

subdivision of K1,p−1. Let G be a graph obtained by K∗
1,p−1 and a path Pn−p−q+2

by identifying v and one endvertex of the path. Clearly, G is a tree of order n

with p pendant vertices, and there are exactly q vertices of degree 2 in T such

that each of them is adjacent to a pendant vertex. From Lemma 3.1, we have

SWn−2(T ) =
1
2

(

n3 − 2n2 + n− 2np+ 2p− 2q
)

= w, as desired.

Conversely, for any tree T of order n (n ≥ 5) with p pendant vertices, from

Lemma 3.1, SWn−2(T ) =
1
2

(

n3 − 2n2 + n − 2np + 2p− 2q
)

. We now show that

p, q satisfy one of (1), (2), (3). Clearly, p ≥ 2, 0 ≤ q ≤ ⌊n−1
2
⌋ and q ≤ p.

Claim 1. p+ q ≤ n− 1.

Proof of Claim 1. Assume, to the contrary, that p+ q = n. Then T is path of

order n. Since n ≥ 5, it follows that there exists a vertex of degree 2 having no

adjacent pendant vertex, which contradicts to p+ q = n.

If q ≥ 2, then it follows from Claim 1 and q ≤ p that q ≤ p ≤ n − q − 1. If

q = 1, then it follows from Claim 1 that 2 ≤ p ≤ n − 2. Furthermore, if p = 2,

then T is a path of n. Since n ≥ 5, it follows that q = 2, a contradiction. If q = 0,

then it follows from Claim 1 that 2 ≤ p ≤ n− 1. Furthermore, if p = 2, then T

is a path of n. Since n ≥ 5, it follows that q = 2, a contradiction. If p = 3, then

T is a tree of n. Since n ≥ 5, it follows that q ≥ 1, a contradiction.
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4 The case for general k

For trees, we have the following result.

Theorem 4.1 Let T be a graph obtained from a path Pt and a star Sn−t+1 by

identifying a pendant vertex of Pt and the center v of Sn−t+1, where 1 ≤ t ≤ n−1

and k ≤ n. Then

SWk(T ) = t

(

n− 1

k

)

−

(

t

k + 1

)

−

(

n

k + 1

)

+

(

n− t + 1

k + 1

)

+ (k − 1)

(

n

k

)

.

Proof. For any S ⊆ V (T ) and |S| = k, if S ⊆ V (Sn−t+1)− v, then dG(S) = k.

There are
(

n−t

k

)

such subsets, contributing to SWk by k
(

n−t

k

)

. If S ⊆ V (Pt),

then it contributes to SWk by (k − 1)
(

t+1
k+1

)

from Lemma 3.2. Suppose that

S ∩ V (Pt) 6= ∅ and S ∩ (V (Sn−t+1) − v) 6= ∅. Let |S ∩ V (Sn−t+1 − v)| = i,

|S∩V (Pt)| = k− i and Pt = u1u2 . . . ut, where v = u1. Without loss of generality,

let S ∩ V (Pt) = {uj1, uj2, . . . , ujk−i
} where 1 ≤ j1 < j2 < · · · < jk−i ≤ t. Then

k − i ≤ jk−i ≤ t. Let jk−i = j. Then dG(S) = i+ j − 1, and k − i ≤ j ≤ t. Once

the vertex uj is chosen, we have
(

j−2
k−i−1

)

ways to choose uj1, uj2, . . . , ujk−i−1
. In

this case, we contribute to SWk by

X =

k−1
∑

i=1

(

n− t

i

)

[

t
∑

j=k−i

(

j − 1

k − i− 1

)

(j + i− 1)

]

.

Since

(

j − 1

k − i− 1

)

(j + i− 1) =

(

j − 1

k − i− 1

)

j +

(

j − 1

k − i− 1

)

(i− 1)

= (k − i)

(

j

k − i

)

+ (i− 1)

(

j − 1

k − i− 1

)

,
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it follows that

t
∑

j=k−i

(

j − 1

k − i− 1

)

(j + i− 1)

= (k − i)
t

∑

j=k−i

(

j

k − i

)

+ (i− 1)
t

∑

j=k−i

(

j − 1

k − i− 1

)

= (k − i)

(

t + 1

k − i+ 1

)

+ (i− 1)

(

t

k − i

)

,

and hence

X =
k−1
∑

i=1

(

n− t

i

)

[

t
∑

j=k−i

(

j − 1

k − i− 1

)

(j + i− 1)

]

=
k−1
∑

i=1

(

n− t

i

)[

(k − i)

(

t+ 1

k − i+ 1

)

+ (i− 1)

(

t

k − i

)]

=
k−1
∑

i=1

(

n− t

i

)

(k − i)

(

t + 1

k − i+ 1

)

+
k−1
∑

i=1

(

n− t

i

)

(i− 1)

(

t

k − i

)

=
k−1
∑

i=1

(k − i)

(

t

k − i+ 1

)(

n− t

i

)

+
k−1
∑

i=1

(k − i)

(

t

k − i

)(

n− t

i

)

+
k−1
∑

i=1

(i− 1)

(

t

k − i

)(

n− t

i

)

=
k−1
∑

i=1

(k − i)

(

t

k − i+ 1

)(

n− t

i

)

+ (k − 1)
k−1
∑

i=1

(

t

k − i

)(

n− t

i

)

=
k−1
∑

i=1

(k − i)

(

t

k − i+ 1

)(

n− t

i

)

+ (k − 1)

[(

n

k

)

−

(

t

k

)

−

(

n− t

k

)]

.

Let

Y =
k−1
∑

i=1

(k − i)

(

t

k − i+ 1

)(

n− t

i

)

.
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Then

Y =
k−1
∑

i=1

(k − i+ 1)

(

t

k − i+ 1

)(

n− t

i

)

−
k−1
∑

i=1

(

t

k − i+ 1

)(

n− t

i

)

= t
k−1
∑

i=1

(

t− 1

k − i

)(

n− t

i

)

−
k−1
∑

i=1

(

t

k + 1− i

)(

n− t

i

)

= t

[(

n− 1

k

)

−

(

t− 1

k

)

−

(

n− t

k

)]

−

[(

n

k + 1

)

−

(

t

k + 1

)

− t

(

n− t

k

)

−

(

n− t

k + 1

)]

,

and hence

SWk(T )

= (k − 1)

(

t + 1

k + 1

)

+ k

(

n− t

k

)

+X

= (k − 1)

(

t + 1

k + 1

)

+ k

(

n− t

k

)

+ Y + (k − 1)

[(

n

k

)

−

(

t

k

)

−

(

n− t

k

)]

= (k − 1)

(

t + 1

k + 1

)

+ k

(

n− t

k

)

+ t

[(

n− 1

k

)

−

(

t− 1

k

)

−

(

n− t

k

)]

−

[(

n

k + 1

)

−

(

t

k + 1

)

− t

(

n− t

k

)

−

(

n− t

k + 1

)]

+(k − 1)

[(

n

k

)

−

(

t

k

)

−

(

n− t

k

)]

= (k − 1)

(

t

k + 1

)

+ (k − 1)

(

t

k

)

+ k

(

n− t

k

)

+ t

(

n− 1

k

)

− t

(

t− 1

k

)

−t

(

n− t

k

)

−

(

n

k + 1

)

+

(

t

k + 1

)

+ t

(

n− t

k

)

+

(

n− t

k + 1

)

+(k − 1)

(

n

k

)

− (k − 1)

(

t

k

)

− (k − 1)

(

n− t

k

)
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= (k − 1)

(

t

k + 1

)

+ k

(

n− t

k

)

+ t

(

n− 1

k

)

− t

(

t− 1

k

)

−

(

n

k + 1

)

+

(

t

k + 1

)

+

(

n− t

k + 1

)

+ (k − 1)

(

n

k

)

− (k − 1)

(

n− t

k

)

= k

(

t

k + 1

)

+

(

n− t

k

)

+ t

(

n− 1

k

)

− t

(

t− 1

k

)

−

(

n

k + 1

)

+

(

n− t

k + 1

)

+(k − 1)

(

n

k

)

= k

(

t

k + 1

)

+ t

(

n− 1

k

)

− t

(

t− 1

k

)

−

(

n

k + 1

)

+

(

n− t+ 1

k + 1

)

+ (k − 1)

(

n

k

)

= t

(

n− 1

k

)

−

(

t

k + 1

)

−

(

n

k + 1

)

+

(

n− t+ 1

k + 1

)

+ (k − 1)

(

n

k

)

.

The following corollary is immediate from Theorem 4.1.

Corollary 4.2 For a positive integer w, there exists a tree T of order n such that

SWk(T ) = w if

w = t

(

n− 1

k

)

−

(

t

k + 1

)

−

(

n

k + 1

)

+

(

n− t+ 1

k + 1

)

+ (k − 1)

(

n

k

)

,

where 1 ≤ t ≤ n− 1 and k ≤ n.

For general graphs, we have the following.

Theorem 4.3 Let G be a graph obtained from a clique Kn−r and a star Sr+1 by

identifying a vertex of Kn−r and the center v of Sr+1. For k ≤ r ≤ n− 1− k,

SWk(G) = (n− 1)

(

n− 1

k − 1

)

−

(

n− r − 1

k

)

.

Proof. For any S ⊆ V (G) and |S| = k, if S ⊆ V (Kn−r), then dG(S) = k − 1.

There are
(

n−r

k

)

such subsets, contributing to SWk by (k − 1)
(

n−r

k

)

. If S ⊆

V (Sr+1) − v, then dG(S) = k. There are
(

r

k

)

such subsets, contributing to SWk
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by k
(

r

k

)

. Suppose that S ∩ V (Kn−r) 6= ∅ and S ∩ (V (Sr+1) − v) 6= ∅. If v ∈ S,

then dG(S) = k − 1. There are
(

n−r−1
k−x−1

)(

r

x

)

such subsets, contributing to SWk by

(k − 1)
∑k−1

x=1

(

n−r−1
k−x−1

)(

r

x

)

. If v /∈ S, then dG(S) = k. There are
(

n−r−1
k−x

)(

r

x

)

such

subsets, contributing to SWk by k
∑k−1

x=1

(

n−r−1
k−x

)(

r

x

)

. Then

SWk(G)

= (k − 1)

(

n− r

k

)

+ k

(

r

k

)

+ (k − 1)

k−1
∑

x=1

(

n− r − 1

k − x− 1

)(

r

x

)

+k
k−1
∑

x=1

(

n− r − 1

k − x

)(

r

x

)

= (k − 1)

(

n− r

k

)

+ k

(

r

k

)

+ (k − 1)

[(

n− 1

k − 1

)

−

(

n− 1− r

k − 1

)]

+k

[(

n− 1

k

)

−

(

n− 1− r

k

)

−

(

r

k

)]

= (k − 1)

(

n− r

k

)

+ (k − 1)

[(

n− 1

k − 1

)

−

(

n− 1− r

k − 1

)]

+k

[(

n− 1

k

)

−

(

n− 1− r

k

)]

= (k − 1)

(

n− r

k

)

+ (n− 1)

(

n− 1

k − 1

)

− (k − 1)

(

n− 1− r

k − 1

)

− k

(

n− 1− r

k

)

= (n− 1)

(

n− 1

k − 1

)

+ (k − 1)

(

n− r − 1

k

)

− k

(

n− 1− r

k

)

= (n− 1)

(

n− 1

k − 1

)

−

(

n− 1− r

k

)

,

as desired.

The following corollary is immediate from Theorems 4.1 and 4.3.

Corollary 4.4 For a positive integer w, there exists a connected graph G of order

n such that SWk(G) = w if w satisfies one of the following conditions:

(1) w = t
(

n−1
k

)

−
(

t

k+1

)

−
(

n

k+1

)

+
(

n−t+1
k+1

)

+ (k − 1)
(

n

k

)

, where 1 ≤ t ≤ n− 1

12



and k ≤ n.

(2) w = (n− 1)
(

n−1
k−1

)

−
(

n−r−1
k

)

, where k ≤ r ≤ n− 1− k and k ≤ n.
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[5] J. Cáceres, A. Márquez, M.L. Puertas, Steiner distance and convexity in

graphs, Eur. J. Combin. 29 (2008) 726–736.

[6] G. Chartrand, O.R. Oellermann, S. Tian, H.B. Zou, Steiner distance in
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