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Abstract

Let Gσ be an oriented graph obtained by assigning an orientation
σ to the edge set of a simple undirected graph G. Let S(Gσ) be the
skew adjacency matrix of Gσ. The skew energy of Gσ is defined as
the sum of the absolute values of all eigenvalues of S(Gσ). In this
paper, we give the skew energy order of a family of digraphs and
determine the oriented bicyclic graphs of order n ≥ 13 with the first
five largest skew energies, which extends the results of the paper
[X. Shen, Y. Hou, C. Zhang, Bicyclic digraphs with extremal skew
energy, Electron. J. Linear Algebra 23 (2012) 340–355].
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1 Introduction

An important quantum-chemical characteristic of a conjugated molecule
is its total π−electron energy. The energy of a graph has closed links to
chemistry. Let G be a simple undirected graph and A(G) be the adjacency
matrix of G. Gutman [7] firstly defined the energy E(G) of G as follows:

E(G) =
n∑

i=1

|λi|,
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where λ1, λ2, . . . , λn are the eigenvalues of A(G). For more results about
graph energy, we refer the readers to the surveys [8, 9], the book [14] and
the recent papers [16, 18].
There are various generalizations of graph energy, such as the Randić

energy [5, 15], the distance energy [22], the incidence energy [2, 3] and
the energy of a polynomial [11, 17]. In this paper, we focus on the skew
energy of a graph. Let Gσ be an oriented graph obtained by assigning
an orientation σ to the edge set of a simple undirected graph G. The
skew adjacency matrix S(Gσ) = (sij) of Gσ is a real skew symmetric
matrix, where sij = 1 and sji = −1 if ij is an arc of Gσ, otherwise sij =
sji = 0. Then the authors [1] defined the skew energy ES(G

σ) of an oriented
graph Gσ as the sum of the absolute values of all eigenvalues of S(Gσ). The
skew characteristic polynomial of Gσ is defined as

PS(G
σ;x) = det(xI − S(Gσ)) =

n∑
i=0

bix
n−i.

Since S(Gσ) is a real skew symmetric matrix, we have b2k(G
σ) ≥ 0 and

b2k+1(G
σ) = 0 for all 0 ≤ i ≤ ⌊n

2 ⌋ (see [6]). Thus we have

PS(G
σ;x) =

⌊n
2 ⌋∑

k=0

b2k(G
σ)xn−2k.

By the coefficients of PS(G
σ;x), the skew energy ES(Gσ) can be expressed

by the following integral formula as follows [13]:

ES(Gσ) =
1

π

∫ +∞

−∞

1

t2
ln(1 +

⌊n
2 ⌋∑

k=0

b2kt
2k)dt.

Thus ES(Gσ) is a strictly monotonically increasing function of b2k(G
σ), k =

0, 1, . . . , ⌊n
2 ⌋. Consequently, if G

σ1 and Hσ2 are oriented graphs with

b2k(G
σ1) ≥ b2k(H

σ2) for each k (0 ≤ k ≤ ⌊n
2
⌋), (1)

then
ES(Gσ1) ≥ ES(Hσ2). (2)

Equality in (2) is attained only if (1) is an equality for all 0 ≤ k ≤ ⌊n
2 ⌋.

If the inequalities (1) hold for all k, then we write G ≽ H or H ≼ G.
If G ≽ H, but not H ≽ G, then we write G ≻ H. That is exactly
the quasi-order relation defined by Gutman and Polansky [10] on graph
energy, which is generalized to the skew-energy of oriented graph. See
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[6, 13, 19, 20, 23, 25] for some recent results about the spectrum and energy
of the skew-adjacency matrix.
Due to the coefficients b2k ≥ 0, it makes that the skew energy problem

is much easier than the adjacency energy problems. Particularly, as far as
the unicyclic and bicyclic graphs are concerned, Hou et al. [13] determined
the oriented unicyclic graphs with the minimum and the maximum skew
energy respectively. Subsequently, they also [19] characterized the bicyclic
digraphs with the minimum and the maximum skew energy respectively.
Very recently, Wang et al. [24] identified the bicyclic digraphs with the
second maximum skew energy. In this paper, we will determine the oriented
bicyclic graphs of order n ≥ 13 with the first five largest skew energies,
which extends the results in [19, 24].
For the sake of completeness, we say something about the orientation of

Gσ that already exists [19]. Let Gσ be an orientation of a graph G. If C is
an even cycle of G, then we say C is evenly oriented relative to Gσ if it has
an even number of edges oriented in the direction of the routing; otherwise
C is oddly oriented. Let W be a subset of V (G) and W = V (G)\W . The
orientation Gσ′

of G obtained from Gσ by reversing the orientations of all
arcs between W and W is said to be obtained from Gσ by a switching with
respect to W . Moreover, two orientations Gσ and Gσ′

of a graph G are said
to be switching-equivalent if Gσ′

can be obtained from Gσ by a sequence
of switchings. As noted in [1], since the skew adjacency matrices obtained
by a switching are similar, their spectra and hence skew energies are equal.
It is easy to verify that up to switching equivalence there are just two

orientations of a cycle C: (1) Just one edge on the cycle has the opposite
orientation to that of others, we call it orientation +. (2) All edges on
the cycle C have the same orientation, we denote this orientation −. So
if a cycle is of even length and oddly oriented, then it is equivalent to the
orientation +; if a cycle is of even length and evenly oriented, then it is
equivalent to the orientation −. The skew energy of a directed tree is the
same as the energy of its underlying tree ([1]). So by switching equivalence,
for an oriented unicyclic graph or an oriented bicyclic graph, we only need
to consider the orientations of cycles. Simultaneously, we denote by T the
oriented tree and omit the superscript σ since the skew energy of a directed
tree is independent of its orientations.
We denote by G+ (resp., G−) the unicyclic graph on which the orienta-

tion of a cycle is of orientation + (resp., −), and denote by G∗ the unicyclic
graph on which the orientation of a cycle is of arbitrary orientation ∗. Let
Cx, Cy be two cycles in bicyclic graph G with t (t ≥ 0) common vertices.
If t ≤ 1, then G contains exactly two cycles, and we denote by Ga,b the
bicyclic graph on which cycle Cx is of orientation a and cycle Cy is of ori-
entation b, where a, b ∈ {+,−, ∗}. If t ≥ 2, then G contains exactly three
cycles. The third cycle is denoted by Cz, where z = x+y−2t+2. Without
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loss of generality, assume that x ≤ z and y ≤ z. Moreover, Let Ga,b,c

be the bicyclic graph on which cycle Cx is of orientation a, cycle Cy is of
orientation b, Cz is of orientation c, where a, b, c ∈ {+,−, ∗}. The other
graphs used in this paper are shown in Fig. 1.
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Figure 1: Graphs used in the paper.

The rest of this paper is organized as follows. In section 2, some useful
lemmas are stated. In section 3, the quasi-order relations of some graphs
are discussed. In section 4, the oriented bicyclic graphs of order n ≥ 13
with the first five largest skew energies are determined.

2 Some useful lemmas

Let G be a graph. A linear subgraph L of G is a disjoint union of some
edges and some cycles in G [4]. We call a linear subgraph L of G evenly
linear if L contains no cycle with odd length and denote by ELi(G) the set
of all evenly linear subgraphs of G with i vertices. For a linear subgraph
L ∈ ELi(G), denote by pe(L) (resp., po(L)) the number of evenly (resp.,
oddly) oriented cycles in L relative to Gσ.

Lemma 2.1 [12] Let Gσ be an orientation of a graph G. Then

bi(G
σ) =

∑
L∈ELi

(−2)pe(L)2po(L).

Lemma 2.1 implies that b2k(G
σ) = m(Gσ, k) for any orientation of a

graph that does not contain any even cycle, particularly for a tree or a
unicyclic non-bipartite graph.
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Lemma 2.2 [12] Let e = uv be an edge of G. Then

PS(G
σ;x) = PS(G

σ − e;x) + PS(G
σ − u− v;x)

+ 2
∑

e∈C∈Od(Gσ)

PS(G
σ − C;x)− 2

∑
e∈C∈Ev(Gσ)

PS(G
σ − C;x).

Corollary 2.1 [12] Let e = uv be an edge of G that is on no even cycle of
G. Then

PS(G
σ;x) = PS(G

σ − e;x) + PS(G
σ − u− v;x). (3)

By equating the coefficient of polynomials in Eq.(3), we have

b2k(G
σ) = b2k(G

σ − e) + b2k−2(G
σ − u− v). (4)

Furthermore, if e = uv is a pendant edge with pendant vertex v, then

b2k(G
σ) = b2k(G

σ − v) + b2k−2(G
σ − u− v). (5)

A k-matching M of a graph G is a disjoint union of k-edges. The number
of k-matchings of G is denoted by m(G, k).

Lemma 2.3 [13] Let e = uv be an edge of G of order n. Then
(1) m(G, k) = m(G− e, k) +m(G− u− v, k − 1).
(2) If G is a forest, then m(G, k) ≤ m(Pn, k), k ≥ 1.
(3) If H is a subgraph of G, then m(H, k) ≤ m(G, k), k ≥ 1. Moreover,

if H is a proper subgraph of G, then the inequality is strict.
We define m(G, 0) = 1 and m(G, k) = 0 for k ≥ n

2 .

Lemma 2.4 [21] Let a + b = c + d with 0 ≤ a ≤ b and 0 ≤ c ≤ d. Let
a < c. Then
(1) if a is even, then m(Pa ∪ Pb, i) ≥ m(Pc ∪ Pd, i). Furthermore, there

exists at least one index i such that the above inequality is strict.
(2) if a is odd, then m(Pa ∪ Pb, i) ≤ m(Pc ∪ Pd, i). Furthermore, there

exists at least one index i such that the above inequality is strict.

Two results are immediately followed from Lemma 2.3 and 2.4.

Lemma 2.5 [19] Let Fn be a (oriented) forest of order n. Then Fn ≼ Pn.
Equality holds if and only if Fn = Pn.

Lemma 2.6 [19] Pn ≻ P2 ∪ Pn−2 ≻ P4 ∪ Pn−4 ≻ · · ·P2k ∪ Pn−2k ≻
P2k+1 ∪ Pn−2k−1 ≻ P2k−1 ∪ Pn−2k+1 ≻ · · · ≻ P3 ∪ Pn−3 ≻ P1 ∪ Pn−1.

Let B+
n = {U+

4 (a, b)|0 ≤ a ≤ b, a+ b = n− 5}.
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Lemma 2.7 [25] Let k = ⌊n−5
2 ⌋, t = ⌊k

2 ⌋ and ℓ = ⌊k−1
2 ⌋. Then we have

the following quasi-order relation in B+
n :

U+
4 (0, n−5) ≻ U+

4 (2, n−7) ≻ · · · ≻ U+
4 (2t, n−5−2t) ≻ U+

4 (2ℓ+1, n−5−
2ℓ−1) ≻ · · · ≻ U+

4 (7, n−12) ≻ U+
4 (5, n−10) ≻ U+

4 (3, n−8) ≻ U+
4 (1, n−6).

Let A+
n = B+

n \{U+
4 (5, n− 10), U+

4 (3, n− 8), U+
4 (1, n− 6)}.

Lemma 2.8 [25] Let n ≥ 31. The oriented unicyclic graphs of order n
with the first ⌊n−9

2 ⌋ largest skew energies are the oriented unicyclic graphs
in A+

n .

3 The Quasi-order Relation in C+
n

Let C+
n = {B+,+

4,4 (a, n − 9 − a)|0 ≤ a ≤ n − 9} and D+
n−5 = {Pa ∪

(P 4
n−5−a)

+|0 ≤ a ≤ n − 9}. In this section, we determine the quasi-order
relation in D+

n−5 for n ≥ 13, and then apply it to obtain the quasi-order
relation in C+

n for n ≥ 13.

Lemma 3.1 Let 0 ≤ a ≤ ⌊n−10
2 ⌋.

(1) If a is even, then Pa ∪ (P 4
n−5−a)

+ ≻ Pn−9−a ∪ (P 4
a+4)

+.
(2) If a is odd, then Pa ∪ (P 4

n−5−a)
+ ≺ Pn−9−a ∪ (P 4

a+4)
+.

Proof. The conditions of the lemma shows that a < n−9−a. Let e1 = u1v1
be the edge of Pa ∪ (P 4

n−5−a)
+ which connects the cycle C+

4 and the path
Pn−9−a, and e2 = u2v2 be the edge of Pn−9−a ∪ (P 4

a+4)
+ which connects

C+
4 and Pa. By Lemma 2.2, we get

b2k(Pa ∪ (P 4
n−5−a)

+) = b2k(C
+
4 ∪Pa ∪Pn−9−a)+ b2k−2(P3 ∪Pa ∪Pn−10−a),

b2k(Pn−9−a∪(P 4
a+4)

+) = b2k(C
+
4 ∪Pa∪Pn−9−a)+b2k−2(P3∪Pa−1∪Pn−9−a).

(1) If a is even and a < n−9−a, then a−1 is odd and a−1 ≤ n−9−a.
By Lemma 2.6 we have that

Pa ∪ Pn−10−a ≻ Pa−1 ∪ Pn−9−a.

Then b2k(Pa ∪ (P 4
n−5−a)

+) ≥ b2k(Pn−9−a ∪ (P 4
a+4)

+) and there exists at
least one index k such that the above inequality is strict. Hence, Pa ∪
(P 4

n−5−a)
+ ≻ Pn−9−a ∪ (P 4

a+4)
+.

(2) If a is odd and a < n−9−a, then a−1 is even and a−1 ≤ n−9−a.
By Lemma 2.6 we have that

Pa ∪ Pn−10−a ≺ Pa−1 ∪ Pn−9−a.
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Then b2k(Pa∪(P 4
n−5−a)

+) ≤ b2k(Pn−9−a∪(P 4
a+4)

+) and there exists at least
one index k such that the above inequality is strict. Hence Pa∪(P 4

n−5−a)
+ ≺

Pn−9−a ∪ (P 4
a+4)

+.
This completes the proof. �

Lemma 3.2 Let a < b ≤ ⌊n−10
2 ⌋.

(1) If a is even, then Pa ∪ (P 4
n−5−a)

+ ≻ Pb ∪ (P 4
n−5−b)

+.
(2) If a is odd, then Pa ∪ (P 4

n−5−a)
+ ≺ Pb ∪ (P 4

n−5−b)
+.

Proof. If a < b ≤ ⌊n−10
2 ⌋, then a ≤ n− 9− a, a ≤ n− 10− a, b ≤ n− 9− b

and b ≤ n − 10 − b. Let e1 = u1v1 be the edge of Pa ∪ (P 4
n−5−a)

+ which
connects the cycle C+

4 and the path Pn−9−a, and e2 = u2v2 be the edge of
Pb ∪ (P 4

n−5−b)
+ which connects C+

4 and Pn−9−b. By Lemma 2.2, we get

b2k(Pa ∪ (P 4
n−5−a)

+) = b2k(C
+
4 ∪Pa ∪Pn−9−a)+ b2k−2(P3 ∪Pa ∪Pn−10−a),

b2k(Pb ∪ (P 4
n−5−b)

+) = b2k(C
+
4 ∪ Pb ∪ Pn−9−b) + b2k−2(P3 ∪ Pb ∪ Pn−10−b).

(1) If a is even and a < b, by Lemma 2.6 we have that

Pa ∪ Pn−9−a ≻ Pb ∪ Pn−9−b, Pa ∪ Pn−10−a ≻ Pb ∪ Pn−10−b.

Then b2k(Pa ∪ (P 4
n−5−a)

+) ≥ b2k(Pb ∪ (P 4
n−5−b)

+) and there exists at
least one index k such that the above inequality is strict. Hence, Pa ∪
(P 4

n−5−a)
+ ≻ Pb ∪ (P 4

n−5−b)
+.

(2) If a is odd and a < b, by Lemma 2.6 we have that

Pa ∪ Pn−9−a ≺ Pb ∪ Pn−9−b, Pa ∪ Pn−10−a ≺ Pb ∪ Pn−10−b.

Then b2k(Pa ∪ (P 4
n−5−a)

+) ≤ b2k(Pb ∪ (P 4
n−5−b)

+) and there exists at
least one index k such that the above inequality is strict. Hence, Pa ∪
(P 4

n−5−a)
+ ≺ Pb ∪ (P 4

n−5−b)
+.

This finishes the proof. �

Lemma 3.3 Let ⌈n−5
2 ⌉ ≤ b < a and a′ = n− 9− a.

(1) If a′ is even, then Pa ∪ (P 4
n−5−a)

+ ≻ Pb ∪ (P 4
n−5−b)

+.
(2) If a′ is odd, then Pa ∪ (P 4

n−5−a)
+ ≺ Pb ∪ (P 4

n−5−b)
+.

Proof. Set b′ = n − 9 − b. Then a′ < b′ ≤ ⌊n−13
2 ⌋. Let e1 = u1v1 be the

edge on the cycle C+
4 of Pa ∪ (P 4

n−5−a)
+ such that u1 is the vertex on the

path, and e2 = u2v2 be the edge on the cycle C+
4 of Pb ∪ (P 4

n−5−b)
+ such

that u2 is the vertex on the path. By Lemma 2.2, we get

b2k(Pa ∪ (P 4
n−5−a)

+) = b2k((P
4
a′+4)

+ ∪ Pn−9−a′)
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=b2k(Pa′+4 ∪ Pn−9−a′) + b2k−2(P2 ∪ Pa′ ∪ Pn−9−a′)

+ 2b2k−4(Pa′ ∪ Pn−9−a′),

and

b2k(Pb ∪ (P 4
n−5−b)

+) = b2k((P
4
b′+4)

+ ∪ Pn−9−b′)

=b2k(Pb′+4 ∪ Pn−9−b′) + b2k−2(P2 ∪ Pb′ ∪ Pn−9−b′)

+ 2b2k−4(Pb′ ∪ Pn−9−b′).

(1) If a′ is even and a′ < b′ ≤ ⌊n−13
2 ⌋, by Lemma 2.6 we have that

Pa′+4 ∪ Pn−9−a′ ≻ Pb′+4 ∪ Pn−9−b′ , Pa′ ∪ Pn−9−a′ ≻ Pb′ ∪ Pn−9−b′ ,

then we get b2k((P
4
a′+4)

+ ∪ Pn−9−a′) ≥ b2k((P
4
b′+4)

+ ∪ Pn−9−b′) and there
exists at least one index k such that the above inequality is strict. Thus,
b2k(Pa ∪ (P 4

n−5−a)
+) ≥ b2k(Pb ∪ (P 4

n−5−b)
+) and there exists at least one

index k such that the above inequality is strict. Hence, Pa ∪ (P 4
n−5−a)

+ ≻
Pb ∪ (P 4

n−5−b)
+.

(2) If a′ is odd and a′ < b′ ≤ ⌊n−13
2 ⌋, by Lemma 2.6 we have that

Pa′+4 ∪ Pn−9−a′ ≺ Pb′+4 ∪ Pn−9−b′ , Pa′ ∪ Pn−9−a′ ≺ Pb′ ∪ Pn−9−b′ .

Then we get b2k((P
4
a′+4)

+ ∪ Pn−9−a′) ≤ b2k((P
4
b′+4)

+ ∪ Pn−9−b′) and there
exists at least one index k such that the above inequality is strict. Thus,
b2k(Pa ∪ (P 4

n−5−a)
+) ≤ b2k(Pb ∪ (P 4

n−5−b)
+) and there exists at least one

index k such that the above inequality is strict. Hence, Pa ∪ (P 4
n−5−a)

+ ≺
Pb ∪ (P 4

n−5−b)
+. �

With the similar techniques to those of Lemma 3.2 and 3.3, it is easy to
obtain the following results by Lemma 2.4.

Lemma 3.4 (1) n ≡ 1(mod4), Pn−5
2

∪ (P 4
n−5
2

)+ ≻ Pn−9
2

∪ (P 4
n−1
2

)+ ≻
Pn−7

2
∪ (P 4

n−3
2

)+ ≻ Pn−3
2

∪ (P 4
n−7
2

)+.

(2) n ≡ 3(mod4), Pn−3
2

∪(P 4
n−7
2

)+ ≻ Pn−7
2

∪(P 4
n−3
2

)+ ≻ Pn−9
2

∪(P 4
n−1
2

)+ ≻
Pn−5

2
∪ (P 4

n−5
2

)+.

(3) n ≡ 2(mod4), Pn−4
2

∪(P 4
n−6
2

)+ ≻ Pn−8
2

∪(P 4
n−2
2

)+ ≻ Pn−6
2

∪(P 4
n−4
2

)+ ≻
Pn−2

2
∪ (P 4

n−8
2

)+.

(4) n ≡ 0(mod4), Pn−2
2

∪(P 4
n−8
2

)+ ≻ Pn−6
2

∪(P 4
n−4
2

)+ ≻ Pn−8
2

∪(P 4
n−2
2

)+ ≻
Pn−2

2
∪ (P 4

n−8
2

)+.

Lemma 3.5 (1) Pn−9 ∪ (P 4
4 )

+ ≻ P2 ∪ (P 4
n−7)

+.
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(2) If a is even and 2 ≤ a ≤ ⌊n−12
2 ⌋, then Pn−9−a ∪ (P 4

a+4)
+ ≻ Pa+2 ∪

(P 4
n−7−a)

+.
(3) If a is odd and 1 ≤ a ≤ ⌊n−12

2 ⌋, then Pn−9−a ∪ (P 4
a+4)

+ ≺ Pa+2 ∪
(P 4

n−7−a)
+.

Proof. (1) We can choose the edge e1 = u1v1 on the path Pn−9 of Pn−9 ∪
(P 4

4 )
+ which connects P2 and Pn−11, and the edge e2 = u2v2 on the path of

the uncyclic graph (P 4
n−7)

+ of P2∪ (P 4
n−7)

+ which connects C4 and Pn−11.
By Lemma 2.2 we get

b2k(Pn−9 ∪ (p44)
+) = b2k(C

+
4 ∪ P2 ∪ Pn−11) + b2k−2(C

+
4 ∪ P1 ∪ Pn−12),

and

b2k(P2 ∪ (p4n−7)
+) = b2k(C

+
4 ∪ P2 ∪ Pn−11) + b2k−2(P3 ∪ P2 ∪ Pn−12).

Easily to verify that C+
4 ∪ P1 ≻ P3 ∪ P2. So, b2k−2(C

+
4 ∪ P1 ∪ Pn−12) >

b2k−2(P3 ∪ P2 ∪ Pn−12). Then, b2k(Pn−9 ∪ (p44)
+) ≥ b2k(P2 ∪ (p4n−7)

+) and
there exists at least one index k such that the above inequality is strict.
Hence Pn−9 ∪ (P 4

4 )
+ ≻ P2 ∪ (P 4

n−7)
+.

(2) By Lemma 2.1 we have that

b2k(Pn−9−a ∪ (P 4
a+4)

+)

=m(P 4
a+4 ∪ Pn−9−a, k) + 2m(Pa ∪ Pn−9−a, k − 2)

=m(Pa+4 ∪ Pn−9−a, k) +m(Pa ∪ Pn−9−a, k − 1)

+ 3m(Pa ∪ Pn−9−a, k − 2),

and

b2k(Pa+2 ∪ (P 4
n−7−a)

+)

=m(P 4
n−7−a ∪ Pa+2, k) + 2m(Pa+2 ∪ Pn−11−a, k − 2)

=m(Pa+2 ∪ Pn−7−a, k) +m(Pa+2 ∪ Pn−11−a, k − 1)

+ 3m(Pa+2 ∪ Pn−11−a, k − 2).

By Lemma 2.3, we get

b2k(Pn−9−a ∪ (P 4
a+4)

+)− b2k(Pa+2 ∪ (P 4
n−7−a)

+)

=m(Pa+4 ∪ Pn−9−a, k) +m(Pa ∪ Pn−9−a, k − 1)

+ 3m(Pa ∪ Pn−9−a, k − 2)−m(Pa+2 ∪ Pn−7−a, k)

−m(Pa+2 ∪ Pn−11−a, k − 1)− 3m(Pa+2 ∪ Pn−11−a, k − 2)

=m(Pa+1 ∪ Pn−9−a, k − 1)−m(Pa+2 ∪ Pn−10−a, k − 1)
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+m(Pa ∪ Pn−9−a, k − 1) + 3m(Pa ∪ Pn−9−a, k − 2)

−m(Pa+2 ∪ Pn−11−a, k − 1)− 3m(Pa+2 ∪ Pn−11−a, k − 2)

=m(Pa+1 ∪ Pn−10−a, k − 1) +m(Pa ∪ Pn−11−a, k − 2)

+m(Pa−1 ∪ Pn−11−a, k − 3)−m(Pa+1 ∪ Pn−10−a, k − 1)

−m(Pa ∪ Pn−11−a, k − 2)−m(Pa ∪ Pn−12−a, k − 3)

+m(Pa ∪ Pn−11−a ∪ P2, k − 1) +m(Pa ∪ Pn−12−a, k − 2)

+ 3m(Pa ∪ Pn−11−a ∪ P2, k − 2) + 3m(Pa ∪ Pn−12−a, k − 3)

−m(Pa ∪ P2 ∪ Pn−11−a, k − 1)−m(Pa−1 ∪ Pn−11−a, k − 2)

− 3m(Pa ∪ P2 ∪ Pn−11−a, k − 2)− 3m(Pa−1 ∪ Pn−11−a, k − 3)

=2m(Pa ∪ Pn−12−a, k − 3)− 2m(Pa−1 ∪ Pn−11−a, k − 3)

+m(Pa ∪ Pn−12−a, k − 2)−m(Pa−1 ∪ Pn−11−a, k − 2).

If a is even and 2 ≤ a ≤ ⌊n−12
2 ⌋, then by Lemma 2.4 we have

m(Pa ∪ Pn−12−a, k − 2) ≥ m(Pa−1 ∪ Pn−11−a, k − 2),

and
m(Pa ∪ Pn−12−a, k − 3) ≥ m(Pa−1 ∪ Pn−11−a, k − 3).

Furthermore, there exists at least one index k such that the above inequality
is strict.
So, we have b2k(Pn−9−a ∪ (P 4

a+4)
+) ≥ b2k(Pa+2 ∪ (P 4

n−7−a)
+) and there

exists at least one index k such that the above inequality is strict. Then
Pn−9−a ∪ (P 4

a+4)
+ ≻ Pa+2 ∪ (P 4

n−7−a)
+.

(3) If a is odd and 1 ≤ a ≤ ⌊n−12
2 ⌋, then by Lemma 2.4 we obtain

m(Pa ∪ Pn−12−a, k − 2) ≤ m(Pa−1 ∪ Pn−11−a, k − 2),

and
m(Pa ∪ Pn−12−a, k − 3) ≤ m(Pa−1 ∪ Pn−11−a, k − 3).

Furthermore, there exists at least one index k such that the above in-
equality is strict. Therefore, we have b2k(Pn−9−a ∪ (P 4

a+4)
+) ≤ b2k(Pa+2 ∪

(P 4
n−7−a)

+) and there exists at least one index k such that the above in-
equality is strict. Thus, Pn−9−a ∪ (P 4

a+4)
+ ≺ Pa+2 ∪ (P 4

n−7−a)
+. �

From Lemmas 3.1–3.5, we can easily obtain the following results.

Theorem 3.1 Let n ≥ 13 and 0 ≤ k ≤ ⌊n−13
4 ⌋. Then quasi-order relation

in D+
n−5 are determined as follows.

(1) n ≡ 1(mod4), P0 ∪ (P 4
n−5)

+ ≻ Pn−9 ∪ (P 4
4 )

+ ≻ P2 ∪ (P 4
n−7)

+ ≻ · · · ≻
P2k ∪ (P 4

n−5−2k)
+ ≻ Pn−9−2k ∪ (P 4

4+2k)
+ ≻ P2k+2 ∪ (P 4

n−7−2k)
+ ≻ · · · ≻

Pn−13
2

∪(P 4
n+3
2

)+ ≻ Pn−5
2

∪(P 4
n−5
2

)+ ≻ Pn−9
2

∪(P 4
n−1
2

)+ ≻ Pn−7
2

∪(P 4
n−3
2

)+ ≻
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Pn−11
2

∪ (P 4
n+1
2

)+ ≻ · · · ≻ P2k+3 ∪ (P 4
n−8−2k)

+ ≻ Pn−10−2k ∪ (P 4
2k+5)

+ ≻
P2k+1∪(P 4

n−6−2k)
+ ≻ · · · ≻ P3∪(P 4

n−8)
+ ≻ Pn−10∪(P 4

5 )
+ ≻ P1∪(P 4

n−6)
+.

(2) n ≡ 3(mod4), P0 ∪ (P 4
n−5)

+ ≻ Pn−9 ∪ (P 4
4 )

+ ≻ P2 ∪ (P 4
n−7)

+ ≻ · · · ≻
P2k ∪ (P 4

n−5−2k)
+ ≻ Pn−9−2k ∪ (P 4

4+2k)
+ ≻ P2k+2 ∪ (P 4

n−7−2k)
+ ≻ · · · ≻

Pn−11
2

∪(P 4
n+1
2

)+ ≻ Pn−7
2

∪(P 4
n−3
2

)+ ≻ Pn−9
2

∪(P 4
n−1
2

)+ ≻ Pn−5
2

∪(P 4
n−5
2

)+ ≻
Pn−13

2
∪ (P 4

n+3
2

)+ ≻ · · · ≻ P2k+3 ∪ (P 4
n−8−2k)

+ ≻ Pn−10−2k ∪ (P 4
2k+5)

+ ≻
P2k+1∪(P 4

n−6−2k)
+ ≻ · · · ≻ P3∪(P 4

n−8)
+ ≻ Pn−10∪(P 4

5 )
+ ≻ P1∪(P 4

n−6)
+.

(3) n ≡ 2(mod4), P0 ∪ (P 4
n−5)

+ ≻ Pn−9 ∪ (P 4
4 )

+ ≻ P2 ∪ (P 4
n−7)

+ ≻ · · · ≻
P2k ∪ (P 4

n−5−2k)
+ ≻ Pn−9−2k ∪ (P 4

4+2k)
+ ≻ P2k+2 ∪ (P 4

n−7−2k)
+ ≻ · · · ≻

Pn−10
2

∪ (P 4
n
2
)+ ≻ Pn−8

2
∪ (P 4

n−2
2

)+ ≻ Pn−6
2

∪ (P 4
n−4
2

)+ ≻ Pn−12
2

∪ (P 4
n+2
2

)+ ≻
· · · ≻ P2k+3∪ (P 4

n−8−2k)
+ ≻ Pn−10−2k ∪ (P 4

2k+5)
+ ≻ P2k+1∪ (P 4

n−6−2k)
+ ≻

· · · ≻ P3 ∪ (P 4
n−8)

+ ≻ Pn−10 ∪ (P 4
5 )

+ ≻ P1 ∪ (P 4
n−6)

+.
(4) n ≡ 0(mod4), P0 ∪ (P 4

n−5)
+ ≻ Pn−9 ∪ (P 4

4 )
+ ≻ P2 ∪ (P 4

n−7)
+ ≻ · · · ≻

P2k ∪ (P 4
n−5−2k)

+ ≻ Pn−9−2k ∪ (P 4
4+2k)

+ ≻ P2k+2 ∪ (P 4
n−7−2k)

+ ≻ · · · ≻
Pn−12

2
∪ (P 4

n+2
2

)+ ≻ Pn−6
2

∪ (P 4
n−4
2

)+ ≻ Pn−8
2

∪ (P 4
n−2
2

)+ ≻ Pn−10
2

∪ (P 4
n
2
)+ ≻

· · · ≻ P2k+3∪ (P 4
n−8−2k)

+ ≻ Pn−10−2k ∪ (P 4
2k+5)

+ ≻ P2k+1∪ (P 4
n−6−2k)

+ ≻
· · · ≻ P3 ∪ (P 4

n−8)
+ ≻ Pn−10 ∪ (P 4

5 )
+ ≻ P1 ∪ (P 4

n−6)
+.

Theorem 3.2 Let n ≥ 13 and 0 ≤ k ≤ ⌊n−13
4 ⌋, then we have the following

quasi-order relation in C+
n :

(1) n ≡ 1(mod4), B+,+
4,4 (0, n− 9) ≻ B+,+

4,4 (n− 9, 0) ≻ B+,+
4,4 (2, n− 11) ≻

· · ·B+,+
4,4 (2k, n − 9 − 2k) ≻ B+,+

4,4 (n − 9 − 2k, 2k) ≻ B+,+
4,4 (2k + 2, n − 11 −

2k) ≻ · · · ≻ B+,+
4,4 (n−13

2 , n−5
2 ) ≻ B+,+

4,4 (n−5
2 , n−13

2 ) ≻ B+,+
4,4 (n−9

2 , n−9
2 ) ≻

B+,+
4,4 (n−7

2 , n−11
2 ) ≻ B+,+

4,4 (n−11
2 , n−7

2 ) ≻ · · · ≻ B+,+
4,4 (2k+ 3, n− 12− 2k) ≻

B+,+
4,4 (n− 10− 2k, 2k+1) ≻ B+,+

4,4 (2k+1, n− 10− 2k) ≻ · · · ≻ B+,+
4,4 (3, n−

12) ≻ B+,+
4,4 (n− 10, 1) ≻ B+,+

4,4 (1, n− 10).

(2) n ≡ 3(mod4), B+,+
4,4 (0, n− 9) ≻ B+,+

4,4 (n− 9, 0) ≻ B+,+
4,4 (2, n− 11) ≻

· · ·B+,+
4,4 (2k, n − 9 − 2k) ≻ B+,+

4,4 (n − 9 − 2k, 2k) ≻ B+,+
4,4 (2k + 2, n − 11 −

2k) ≻ · · · ≻ B+,+
4,4 (n−11

2 , n−7
2 ) ≻ B+,+

4,4 (n−7
2 , n−11

2 ) ≻ B+,+
4,4 (n−9

2 , n−9
2 ) ≻

B+,+
4,4 (n−5

2 , n−13
2 ) ≻ B+,+

4,4 (n−13
2 , n−5

2 ) ≻ · · · ≻ B+,+
4,4 (2k+ 3, n− 12− 2k) ≻

B+,+
4,4 (n− 10− 2k, 2k+1) ≻ B+,+

4,4 (2k+1, n− 10− 2k) ≻ · · · ≻ B+,+
4,4 (3, n−

12) ≻ B+,+
4,4 (n− 10, 1) ≻ B+,+

4,4 (1, n− 10).

(3) n ≡ 2(mod4), B+,+
4,4 (0, n− 9) ≻ B+,+

4,4 (n− 9, 0) ≻ B+,+
4,4 (2, n− 11) ≻

· · ·B+,+
4,4 (2k, n − 9 − 2k) ≻ B+,+

4,4 (n − 9 − 2k, 2k) ≻ B+,+
4,4 (2k + 2, n − 11 −

2k) ≻ · · · ≻ B+,+
4,4 (n−10

2 , n−8
2 ) ≻ B+,+

4,4 (n−8
2 , n−10

2 ) ≻ B+,+
4,4 (n−6

2 , n−12
2 ) ≻

B+,+
4,4 (n−12

2 , n−6
2 ) ≻ · · · ≻ B+,+

4,4 (2k+3, n−12−2k) ≻ B+,+
4,4 (n−10−2k, 2k+

1) ≻ B+,+
4,4 (2k+1, n−10−2k) ≻ · · · ≻ B+,+

4,4 (3, n−12) ≻ B+,+
4,4 (n−10, 1) ≻

B+,+
4,4 (1, n− 10).
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(4) n ≡ 0(mod4), B+,+
4,4 (0, n− 9) ≻ B+,+

4,4 (n− 9, 0) ≻ B+,+
4,4 (2, n− 11) ≻

· · ·B+,+
4,4 (2k, n − 9 − 2k) ≻ B+,+

4,4 (n − 9 − 2k, 2k) ≻ B+,+
4,4 (2k + 2, n − 11 −

2k) ≻ · · · ≻ B+,+
4,4 (n−12

2 , n−6
2 ) ≻ B+,+

4,4 (n−6
2 , n−12

2 ) ≻ B+,+
4,4 (n−8

2 , n−10
2 ) ≻

B+,+
4,4 (n−10

2 , n−8
2 ) ≻ · · · ≻ B+,+

4,4 (2k+3, n−12−2k) ≻ B+,+
4,4 (n−10−2k, 2k+

1) ≻ B+,+
4,4 (2k+1, n−10−2k) ≻ · · · ≻ B+,+

4,4 (3, n−12) ≻ B+,+
4,4 (n−10, 1) ≻

B+,+
4,4 (1, n− 10).

Proof. Let e = uv be the edge on the cycle C+
4 of B+,+

4,4 (a, n− 9− a), and

e1 = u1v1 be the edge on the path of G+
4 (a, n − 9 − a) which connects P4

and (P 4
n−4)

+. By Lemma 2.2 we have that

b2k(B
+,+
4,4 (a, n− 9− a))

=b2k(G
+
4 (a, n− 9− a)) + b2k−2(P2 ∪ (P 4

n−4)
+) + 2b2k−4((P

4
n−4)

+)

=b2k((P
4
n−4)

+ ∪ P4) + b2k−2(P3 ∪ Pa ∪ (P 4
n−5−a)

+)

+ b2k−2(P2 ∪ (P 4
n−4)

+) + 2b2k−4((P
4
n−4)

+),

Obviously, we just need to consider the quasi-order in D+
n−5. Then by

Theorem 3.1 we can get the results. �

4 Oriented bicyclic graph with the first five
largest skew energies

In this section, we determine the oriented bicyclic graphs with the first
five largest skew energies. With the help of the ordering of skew energy
of C+

n in Section 3, we focus on the graph B+,+
4,4 (4, n − 13). We need the

following lemmas.

Lemma 4.1 [19] For any bicyclic graph G with t ≤ 1, G∗,∗ ≼ G+,+.

Lemma 4.2 [19] Pa ∪ (P b
n−a)

+ ≺ P2 ∪ (P 4
n−2)

+, a ̸= 2.

Lemma 4.3 [19] m(Pn−2, k−1) ≥ m(Pn−4, k−2) ≥ · · · ≥ m(Pn−2ℓ, k−ℓ).

Theorem 4.1 [19] Among all oriented bicyclic graphs with order n ≥ 8,
B+,+

4,4 (0, n− 9) has the maximal skew energy.

We are now in the stage to get the main results in this paper.

Lemma 4.4 Let Gσ be an oriented bicycle graph of order n with t ≤ 1,
Gσ /∈ C+

n . Then Gσ ≺ B+,+
4,4 (4, n− 13) for n ≥ 13.
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Proof. (i) We first consider t = 1. We can choose the edge e = uv
on Cx such that u is the common vertex of two cycles, and Gσ − e ̸=
(P 4

n)
+, U+

4 (2, n− 7). Obviously, Gσ − e is a unicyclic graph and Gσ −u− v
is a forest. By Lemmas 2.1 and 2.3 we get

b2k(B
+,+
4,4 (4, n− 13))

=m(B4,4(4, n− 13), k) + 2m(U4(4, n− 13), k − 2) + 2m(P 4
n−4, k − 2)

+ 4m(Pn−8, k − 4)

=m(U4(4, n− 9), k) +m(P2 ∪ U4(4, n− 13), k − 1)

+ 2m(U4(4, n− 13), k − 2) + 2m(P 4
n−4, k − 2) + 4m(Pn−8, k − 4)

=m(U4(4, n− 9), k) +m(U4(4, n− 13), k − 1)

+ 3m(U4(4, n− 13), k − 2) + 2m(P 4
n−4, k − 2) + 4m(Pn−8, k − 4).

By Lemmas 2.2 and 4.1 we have that

b2k(G
σ) ≤ b2k(G

+,+)

≤b2k(G
+,+ − e) + b2k−2(G

+,+ − u− v) + 2b2k−x(G
+,+ − C+

x )

<b2k(U
+
4 (4, n− 9)) + b2k−2(P2 ∪ Pn−4) + 2m(Pn−4, k − 2)

=m(U4(4, n− 9), k) +m(P2 ∪ Pn−4, k − 1) + 4m(Pn−4, k − 2)

≤m(U4(4, n− 9), k) +m(U4(4, n− 13), k − 1)

+ 3m(U4(4, n− 13), k − 2) + 2m(P 4
n−4, k − 2) + 4m(Pn−8, k − 4)

=b2k(B
+,+
4,4 (4, n− 13)).

(ii) If t = 0, then we can choose the edge e = uv on Cx such that u is a
vertex in a path which connects Cx and Cy with Gσ−e ̸= (P 4

n)
+, U+

4 (2, n−
7). Obviously, Gσ−e is a unicyclic graph and Gσ−u−v is the disjoint union
of a forest and a unicyclic graph. The following two cases are distinguished.
Case 1: If x = y = 4 andGσ ̸∈ {B+,+

4,4 (0, n−9), B+,+
4,4 (n−9, 0), B+,+

4,4 (2, n−
11), B+,+

4,4 (n−11, 2), B+,+
4,4 (4, n−13)}, then by Lemmas 2.2 and 4.1 we have

that

b2k(G
σ) ≤ b2k(G

+,+)

≤b2k(G
+,+ − e) + b2k−2(G

+,+ − u− v) + 2b2k−4(G
+,+ − C+

4 )

<b2k(U
+
4 (4, n− 9)) + b2k−2(P2 ∪ U+

4 (4, n− 13))

+ 2m(U4(4, n− 13), k − 2) + 4m(Pn − 8, k − 4)

=m(U4(4, n− 9), k) + 2m(Pn−4, k − 2) +m(P2 ∪ U4(4, n− 13), k − 1)

+ 2m(P2 ∪ Pn−8, k − 3) + 2m(U4(4, n− 13), k − 2)

+ 4m(Pn − 8, k − 4)
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=m(U4(4, n− 9), k) +m(U4(4, n− 13), k − 1)

+ 3m(U4(4, n− 13), k − 2) + 2m(P 4
n−4, k − 2) + 4m(Pn−8, k − 4)

=b2k(B
+,+
4,4 (4, n− 13)).

Case 2: There is at most one cycle of length 4. We can choose the edge
e = uv such that G − e contains no C4. Then by Lemmas 2.2 and 4.3 we
have

b2k(G
σ) ≤ b2k(G

+,+)

≤b2k(G
+,+ − e) + b2k−2(G

+,+ − u− v) + 2b2k−x(G
+,+ − C+

x )

≤b2k(G
+,+ − e) + b2k−2(G

+,+ − u− v) + 2b2k−x(U
+
4 (7, n− x− 12))

<b2k(U
+
4 (4, n− 9)) + b2k−2(P2 ∪ U+

4 (7, n− 16))

+ 2m(U4(7, n− 16), k − 2) + 4m(Pn − 8, k − 4)

=m(U4(4, n− 9), k) + 2m(Pn−4, k − 2) +m(P2 ∪ U4(7, n− 16), k − 1)

+ 2m(P2 ∪ Pn−8, k − 3) + 2m(U4(4, n− 13), k − 2)

+ 4m(Pn − 8, k − 4)

≤m(U4(4, n− 9), k) +m(U4(4, n− 13), k − 1)

+ 3m(U4(4, n− 13), k − 2) + 2m(P 4
n−4, k − 2) + 4m(Pn−8, k − 4)

=b2k(B
+,+
4,4 (4, n− 13)).

Combining the above two cases, we complete the proof. �

Lemma 4.5 Let Gσ be an oriented bicycle graph of order n with t ≥ 2 and
Gσ /∈ C+

n . Then Gσ ≺ B+,+
4,4 (4, n− 13) for n ≥ 13.

Proof. We prove the statement by dividing into four cases.
Case 1: x = y = z = 4. Then t = 3. If both Cx and Cy are oddly

oriented, then Cz must be evenly oriented. We can choose the edge e = uv
such that u is the common vertex of Cx, Cy and Gσ−e ̸= (P 4

n)
+, U+

4 (2, n−
7). Without loss of generality, set e ∈ Cy. So, Gσ − Cx = Gσ − e − Cx.
Then

b2k(G
+,+,−)

=m(G, k) + 2m(G− Cx, k − 2) + 2m(G− Cy, k − 2)

− 2m(G− Cz, k − 2)

≤m(G− e, k) +m(G− u− v, k − 1) + 2m(G− e− Cx, k − 2)

+ 2m(G− Cy, k − 2)

<b2k(G
σ − e) +m(Pn−2, k − 1) + 2m(Pn−4, k − 2)
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≤b2k(U
+
4 (4, n− 9)) +m(Pn−2, k − 1) + 2m(Pn−4, k − 2)

=m(U4(4, n− 9), k) +m(Pn−2, k − 1) + 4m(Pn−4, k − 2)

≤m(U4(4, n− 9), k) +m(U4(4, n− 13), k − 1)

+ 3m(U4(4, n− 13), k − 2) + 2m(P 4
n−4, k − 2) + 4m(Pn−8, k − 4)

=b2k(B
+,+
4,4 (4, n− 13)).

If either Cx or Cy is oddly oriented, then Cz must be oddly oriented.
If both Cx and Cy are evenly oriented, then Cz is also evenly oriented.
Similarly, we can prove that b2k(G

σ) < b2k(B
+,+
4,4 (4, n− 13)).

Case 2: x = y = 4, z ̸= 4. Then t = 2 and z = 6. If both Cx and Cy are
oddly oriented, then Cz is oddly oriented. Since n ≥ 13, we can choose the
edge e = uv such that u is the common vertices of Cx and Cy but v is not
andG−u−v is acyclic. Clearly, we can makeGσ−e ̸∈ {(P 4

n)
+, U+

4 (2, n−7)}.
Without loss of generality, let e ∈ Cy. Note that Gσ − Cx = Gσ − e − Cx

and Gσ − Cy, G
σ − Cz is acyclic. Then

b2k(G
+,+,+)

=m(G, k) + 2m(G− Cx, k − 2) + 2m(G− Cy, k − 2)

+ 2m(G− Cz, k − 3)

≤m(G− e, k) + 2m(G− e− Cx, k − 2) +m(G− u− v, k − 1)

+ 2m(Pn−4, k − 2) + 2m(Pn−6, k − 3)

<b2k(G
σ − e) +m(Pn−2, k − 1) + 2m(Pn−4, k − 2)

+ 2m(Pn−6, k − 3)

≤b2k(U
+
4 (4, n− 9)) +m(Pn−2, k − 1) + 2m(Pn−4, k − 2)

+ 2m(Pn−6, k − 3)

=m(U4(4, n− 9), k) +m(Pn−2, k − 1) + 4m(Pn−4, k − 2)

+ 2m(Pn−6, k − 3)

≤m(U4(4, n− 9), k) +m(U4(4, n− 13), k − 1)

+ 3m(U4(4, n− 13), k − 2) + 2m(P 4
n−4, k − 2) + 4m(Pn−8, k − 4)

=b2k(B
+,+
4,4 (4, n− 13)).

If either Cx or Cy is oddly oriented, then Cz is evenly oriented. If both
Cx and Cy are evenly oriented, then Cz is oddly oriented. We can also
prove that b2k(G

σ) < b2k(B
+,+
4,4 (4, n− 13)).

Case 3: If x = 4, z ≥ y ≥ 5, we can choose the edge e = uv on Cx

satisfying that u is the common vertex of Cx and Cy. Obviously, Gσ −u is
acyclic and Gσ − e ̸∈ {(P 4

n)
+, U+

4 (2, n− 7), Gσ −Cy = Gσ − e−Cy}. Then

b2k(G
σ)
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≤m(G, k) + 2m(G− Cx, k − x

2
) + 2m(G− Cy, k − y

2
)

+ 2m(G− Cz, k − z

2
)

≤m(G− e, k) + 2m(G− e− Cy, k − y

2
) +m(G− u− v, k − 1)

+ 2m(Pn−4, k − 2) + 2m(Pn−6, k − 3)

≤b2k(G
σ − e) +m(Pn−2, k − 1) + 2m(Pn−4, k − 2)

+ 2m(Pn−6, k − 3)

<b2k(U
+
4 (7, n− 12)) +m(Pn−2, k − 1) + 2m(Pn−4, k − 2)

+ 2m(Pn−6, k − 3)

=m(U4(7, n− 12), k) +m(Pn−2, k − 1) + 4m(Pn−4, k − 2)

+ 2m(Pn−6, k − 3)

≤m(U4(4, n− 9), k) +m(U4(4, n− 13), k − 1)

+ 3m(U4(4, n− 13), k − 2) + 2m(P 4
n−4, k − 2) + 4m(Pn−8, k − 4)

=b2k(B
+,+
4,4 (4, n− 13)).

Case 4: If there is no cycle of length 4, then z ≥ y ≥ 5, z ≥ x ≥ 5. We can
choose the edge e = uv on Cy such that u is the common vertex of Cx and
Cy. Note that Gσ−e ̸∈ {(P 4

n)
+, U+

4 (2, n−7)} and Gσ−Cx = Gσ−e−Cx.
Then

b2k(G
σ)

≤m(G, k) + 2m(G− Cx, k − x

2
) + 2m(G− Cy, k − y

2
)

+ 2m(G− Cz, k − z

2
)

≤m(G− e, k) + 2m(G− e− Cx, k − 3)

+m(G− u− v, k − 1) + 4m(Pn−6, k − 3)

≤b2k(G
σ − e) +m(Pn−2, k − 1) + 4m(Pn−6, k − 3)

<b2k(U
+
4 (7, n− 12)) +m(Pn−2, k − 1) + 4m(Pn−6, k − 3)

=m(U4(7, n− 12), k) +m(Pn−2, k − 1) + 2m(Pn−4, k − 2)

+ 4m(Pn−6, k − 3)

≤m(U4(4, n− 9), k) +m(U4(4, n− 13), k − 1)

+ 3m(U4(4, n− 13), k − 2) + 2m(P 4
n−4, k − 2) + 4m(Pn−8, k − 4)

=b2k(B
+,+
4,4 (4, n− 13)).

Combining all these cases above, we complete the proof. �

By Lemma 4.4, 4.5 and Theorem 3.2, we obtain the following main result.

16



Theorem 4.2 Among all oriented bicyclic graphs with order n ≥ 13, the
graphs B+,+

4,4 (0, n − 9) ≽ B+,+
4,4 (n − 9, 0) ≽ B+,+

4,4 (2, n − 11) ≽ B+,+
4,4 (n −

11, 2) ≽ B+,+
4,4 (4, n− 13) have the first five largest skew energies.
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