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Abstract
A path P in an edge-colored graph G is called a proper path if no two adjacent

edges of P are colored the same, and G is proper connected if every two vertices
of G are connected by a proper path in G. The proper connection number of a
connected graph G, denoted by pc(G), is the minimum number of colors that are
needed to make G proper connected. In this paper, we investigate the proper con-
nection number of the complement of a graph G according to some constraints of G
itself. Also, we characterize the graphs on n vertices that have proper connection
number n — 2. Using this result, we give a Nordhaus-Gaddum-type theorem for the
proper connection number. We prove that if G and G are both connected, then
4 < pe(G) + pe(G) < n, and the upper bound holds if and only if G or G is the

n-vertex tree with maximum degree n — 2.
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1 Introduction

In this paper we are concerned with simple connected finite graphs. We follow

the terminology and the notation of Bondy and Murty E] The distance between t-
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wo vertices v and v in a connected graph G, denoted by dist(u,v), is the length of a
shortest path between them in G. The eccentricity of a vertex v in G is defined as
eccg(v) = max{dist(z,v) : © € V(G)}, and the diameter of G denoted by diam(G) is
defined as diam(G) = max{eccg(v) : x € V(G)}.

An edge coloring of a graph G is an assignment ¢ of colors to the edges of G, one color
to each edge of GG. If adjacent edges of G are assigned different colors by ¢, then c is a
proper (edge) coloring. The minimum number of colors needed in a proper coloring of G is
referred to as the chromatic indez of G' and denoted by x'(G). A path in an edge-colored
graph with no two edges sharing the same color is called a rainbow path. An edge-colored
graph G is said to be rainbow connected if every pair of distinct vertices of GG is connected
by at least one rainbow path in G. Such a coloring is called a rainbow coloring of the
graph. The minimum number of colors in a rainbow coloring of G is referred to as the

rainbow connection number of G and denoted by rc(G). The concept of rainbow coloring

was first introduced by Chartrand et al. in [5]. In recent years, the rainbow COlOﬁIﬁ has
been extensively studied and has gotten a variety of nice results, see M, Ia IEL IB, | for
examples. For more details we refer to a survey paper [15] and a book [16].

Inspired by rainbow colorings and proper colorings in graphs, Andrews et al. [1] in-
troduce the concept of proper-path colorings. Let GG be an edge-colored graph, where
adjacent edges may be colored the same. A path P in G is called a proper path if no two
adjacent edges of P are colored the same. An edge-coloring c is a proper-path coloring of
a connected graph G if every pair of distinct vertices u, v of GG is connected by a proper
u — v path in G. A graph with a proper-path coloring is said to be proper connected. 1f k
colors are used, then c is referred to as a proper-path k-coloring. The minimum number
of colors needed to produce a proper-path coloring of G is called the proper connection
number of G, denoted by pc(G).

Let G be a nontrivial connected graph of order n and size m. Then the proper

connection number of GG has the following bounds:
1 < pe(G) < min{x'(G), re(G)} < m.

Furthermore, pc(G) = 1 if and only if G = K,, and pc(G) = m if and only if G = K, is
a star of size m.

Among many interesting problems of determining the proper connection numbers of
graphs, it is worth while to study the proper connection number of G according to some
constraints of the complementary graph. In [17], the authors considered this kind of
question for the rainbow connection number r¢(G).

A Nordhaus-Gaddum-type result is a (tight) lower or upper bound on the sum or prod-
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uct of the values of a parameter for a graph and its complement. The name “Nordhaus-
Gaddum-type” is given because Nordhaus and Gaddum dﬁ] first established the type of
inequalities for the chromatic number of graphs in 1956. They proved that if G and G

are complementary graphs on n vertices whose chromatic numbers are x(G) and x(G),
respectively, then 2y/n < x(G) + x(G) < n + 1. Since then, many analogous inequalities
of other graph parameters have been considered, such as diameter [9], domination number
|, rainbow connection number H, E], generalized edge-connectivity [13], and so on.
The rest of this paper is organized as follows: In Section 2, we list some important
known results on proper connection number. In Section 3, we investigate the proper
connection number of the complement of a graph G according to some constraints of G.
In Section 4, we first characterize the graphs on n vertices that have proper connection
number n — 2. Using this result, we give a Nordhaus-Gaddum-type theorem for the
proper connection number. We prove that if G and G are both connected, then 4 <
pc(G) + pe(G) < n, and the upper bound holds if and only if G or G is the n-vertex tree

with maximum degree n — 2.

2 Preliminaries

At the beginning of this section, we list some fundamental results on proper-path
colorings which can be found in H]

Lemma 2.1. H/ If G is a connected graph and H is a connected spanning subgraph of G,
then pc(G) < pc(H). In particular, pc(G) < pc(T') for every spanning tree T of G.

Lemma 2.2. H/ Let G be a connected graph that contains bridges. If b is the maximum

number of bridges incident to a single vertex in G, then pc(G) > b.
Lemma 2.3. H/ If T is a tree with at least two vertices, then pc(T) = x'(T') = A(T).

Given a colored path P = vyvsy ... vs_1vs between any two vertices v; and v,, we denote
by start(P) the color of the first edge in the path, i.e. c(v1v7), and by end(P) the last
color, i.e. c(vs_1vs). If P is just the edge v1vs then start(P) = end(P) = c(vqvs).

Definition 2.1. Let ¢ be an edge-coloring of G that makes G proper connected. We say G
has the strong property if for any pair of vertices u and v € V(G), there exist two proper
paths Py and Py between them (not necessarily disjoint) such that start(Py) # start(Ps)
and end(Py) # end(Py).



In B], the authors studied proper-connection numbers in bipartite graphs. Also, they
presented a result which improve the upper bound A(G) of pc(G) and this result is best

possible whenever the graph G is bipartite and 2-connected.

Lemma 2.4. B] Let G be a graph. If a graph G is bipartite and 2-connected then pc(G) =
2 and there exists a 2-edge-coloring of G such that G has the strong property.

Every complete k-partite graph G' = K, n,....n, contains a spanning bipartite subgraph

H = Ky, tnot. nj_y1n,- We know that H is 2-connected if ny > 2 and k£ > 3. Therefore,

we have the following result.

Corollary 2.5. Every complete k-partite graph G (k > 3) except for the complete graph
Ky, has proper connection number two, and there exists a 2-edge-coloring ¢ of G such that

G has the strong property.

For general 2-connected graphs, Borozan et al. B] gave a tight upper bound for the

proper connection number.

Lemma 2.6. B] Let G be a graph. If a graph G is 2-connected then pc(G) < 3 and there
exists a 3-edge-coloring ¢ of G such that G has the strong property.

Lemma 2.7. Let H = GU{v;} U{vs} such that H is connected. If there is a proper-path
k-coloring ¢ of G such that G has the strong property, then pc(H) < k.

Proof. Let {1,2,...,k} be the color set of c¢. If vjvy € E(H), since H is connected, then
there is a vertex v € V(G) such that u is adjacent to either v; or vy. Without loss of
generality, suppose that uv; € E(H). We extend the coloring ¢ of G to the whole graph
H by assigning color 1 to uvy, and 2 to vyvy. To show that H is proper connected, we
only need to find a proper path between v; and w for any w € V(G). Since G has the
strong property, there exist two proper paths P, P» between w and u (not necessarily
disjoint) such that start(Py) # start(P,) and end(P;) # end(P;). We can get that at
least one of wPyuv; and wPyuv; is a proper path. Then we know that pc(H) < k. Thus,
we may assume that vive ¢ E(H). Let u; € Ny(vy) and uy € Ny(ve). If up = ug, we
assign color 1 to ujvy, and 2 to ugvy. Otherwise, we have that u; # us. Since G is proper
connected, there exists a proper path P of G connecting u; and us. We assign a color
of ¢ being distinct from start(P) to uyvy, and a color of ¢ being distinct from end(P)
to uguy. It can be easily checked that H is proper connected. Hence pc(H) < k follows
correspondingly. O
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Figure 1: G and G with diam(G) > 4

3 Proper connection number of the complementary
graph

We first investigate the proper connection number of G if graph G has diameter at
least 4.

Theorem 3.1. If G is a connected graph with diam(G) > 4, then pc(G) = 2.

Proof. First of all, we see that G is connected since otherwise diam(G) < 2, contradicting
the condition diam(G) > 4. We choose a vertex = with eccq(x) = diam(G). Let N;(z) =
{v: dist(x,v) =i} where 0 < i < 3 and Ny(x) = {v : dist(z,v) > 4}. So Ny = {z} and
N; = Ng(z). In the rest of our paper, we use NN; instead of N;(z) for convenience. By the
definition of N;, we know that uv € E(G) for any u € N;,v € N; with |i —j| > 2. Now we
give G an edge-coloring as follows: we first assign the color 1 to the edges zu for v € N,
and to all edges between N; and N,; next we give the color 2 to all the remaining edges.

We prove that there is a proper path between any two vertices v and v in G. It is trivial
when uv € E(@) Thus we only need to consider the pairs u,v € N; or u € N;,;v € Njiq.
As P = xxsx1479 is a proper path where z; € N;, one can see that u and v are connected
by a proper path for any u € N;,v € N; 1. So it suffices to show that for any u,v € N,
there is a proper path connecting them in G. For i = 1, let P = uxszx,v where x5 € Ny
and x4 € Ny. Clearly, P is a proper path. Similarly, there is a proper path connecting
any two vertices u,v € N3 or Ny. For i = 2, let () = urxsrix4v, where x1 € Ny, 23 € N3
and x4 € Ny. One can see that @ is a proper path. Thus G is proper connected. Hence

we have pc(G) = 2. O



Figure 2: G and G with diam(G) = 3

Theorem 3.2. For a connected noncomplete graph G, if G does not belong to the following
two cases: (i) diam(G) = 2,3, (ii) G contains exactly two components and one of them
is trivial, then pc(G) = 2.

Proof. If G is connected, we know that diam(G) > 4. Hence pc(G) = 2 clearly holds by
Theorem B.1l Now we may assume that G is disconnected. Suppose that G; (1 <14 < h)
are the components of G with ¢; = |V(G;)|. Then G contains a spanning subgraph
K by,
nontrivial components. Then we have pc(G) = 2 from Lemma 2.4l and Corollary 25 O

. By the assumption, G has either at least three components or exactly two

If diam(G) = 3, we have the following theorem for the proper connection number of

G.

Theorem 3.3. Let G be a connected graph with diam(G) = 3 and x the vertex of G such
that eccq(x) = 3 (see Fig. 2). Denote by n; the number of vertices that has distance i

to x fori =1,2,3. We have pc(G) = 2 for the two cases (i) ny = ny = nz = 1, (ii)

ny = 1,n3 > 2. For the remaining cases, if G is triangle-free, then pc(G) = 2.
Proof. If ny = ny = ny = 1. Then G is a 4-path P;, and so pc(G) = pc(P,) = 2. Then we
consider the case that ng = 1,n3 > 2. One can see that G[NoUN;UN3] contains a spanning

subgraph Ky, ns. By Lemmas 2] and 2.4] we know that pe(G[No U Ny U N3)) = 2.
Hence, we can get that pc(G) = 2 from Lemma 27 The remaining cases are: (1)
ny > 1,ny =n3 =1, and (2) ny > 2.

If G is triangle-free, then N; is an independent set in G, and so a clique in G. We
give G an edge-coloring as follows: assign color 1 to zz, and xyz3 for any z; € Ny, 5 €
N, x5 € Ny and assign color 2 to all the other edges in G. Now we prove that this is a

proper-path 2-coloring of G.



For any u € N; and v € N; with |i — j| > 2 or u,v € Ny, one have that uv € G. Since
P = xoxx3xy is a proper path for any x; € N; for ¢ = 1,2, 3, one can see that v and v are
connected by a proper path for any u € N;,v € N;,1. So we only need to consider the
case that for any u,v € Ny or Ny with uv € E(G), there is a proper path between them.
In fact, as G is triangle-free, if uv € E(G), one can see that there is a vertex w € N
such that wu € E(G) and wv € E(G). Thus P = uzxswv is a proper path connecting
v and v in G where x3 € N3. Similarly, we can see that for any u,v € Nj, there is a
proper path between them. Thus we have that this coloring is a proper-path 2-coloring.

So pe(G) = 2. O

Remark: If ny =n3 = landn; > 1,let N3y = {z3}, and n| = [{v € Ny : Ng(v)NN; =
P}|. One can see that there are n/ cut edges in G that is adjacent to x3. By Lemma 22
we have that pc(G) > nj. If ny > 2, let n, = [{v € Ny : dg(v) = 1}|. One can see that
there are n/, cut edges in G that is adjacent to z. By Lemma 22, we have that pc(G) > nl.
Hence, the condition “G is triangle-free” is necessary to determine the proper connection

number of G in the theorem.

The following corollary clearly holds.

Corollary 3.4. For any tree T that is not a star, one has that pc(T) = 2.

Theorem 3.5. Let G be a triangle-free graph with diam(G) = 2. If G is connected, then

pe(G) = 2.

Proof. We choose a vertex = with eccq(z) = 2, and N; = {v : dist(z,v) =i} fori =0,1,2.
One can see that Ny = {z}, N; = Ng(x), and Ny =V \ (N7 U Ny). As G is triangle-free,
it is obvious that N; is a clique in G. Since G is connected, then we have that |N;| > 1
and there is at least one edge uv € F(G) such that u € N; and v € Nj.

We give G an edge-coloring as follows: assign color 1 to the edges between N; and No,
and assign color 2 to all the other edges in G. Now we prove that this is a proper-path
coloring of G. For any z € Ny, we know that P = zvuz (u and z may coincide) is a proper
path. So there are proper paths between z and any other vertices, and there are proper
paths between v and vertices in Ny. For any y € No\{v} and z € Ny, if Ng(y)N Ny # 0, let
w € Ng(y)NNy. Then ywz is a proper path between y and z. Otherwise, Ng(y) NNy = 0.
We claim that y is adjacent to all the other vertices of N, in G. In fact, for any vertex
w € Ny \ y, there exists a vertex w’ € N; such that ww’ € E(G). Since yw' € E(G), we

know that yw € E(G). Especially, we know that yv € E(G). Then yvuz is a proper path

between y and z. Next consider zy, 2 € N such that xo2) ¢ FE(G). Since a9, 25 € No,
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there are x1, 2} € N; such that x 2., 2\2}, € E(G). As G is triangle-free, one can see that

11 # 2 and 212, 207 € E(G). So we have that z,2) 212 is a proper path connecting

and 7. Hence we have that pc(G) = 2. O

Proposition 3.6. If G is triangle-free and contains two components one of which is

trivial, then pc(G) = 2.

Proof. Let G; and Gy be the two components of G such that V(G;) = {v}. Then
G = GV G,, where “V” is the join of two graphs, that is, vertex v is adjacent to all
the other vertices in G. If Gy is connected, then pc(G3) = 2 from Theorem Bl Theorem
and Theorem B Hence, we can get that pc(G) = 2. Otherwise, G5 is disconnected.
Since @ is triangle-free, we know that G5 has two components, and both of them are
cliques of G5. Suppose that H; and H, are the two component of G5, we assign color 1 to
all the edges between v and H; and assign color 2 to the remaining edges. As P = x1vx,
is a proper path connecting x; and x, for any x; € H; and x9 € Hs. So we have that G

is proper connected. Hence pc(G) = 2. O
In conclusion, we can get the following result.

Theorem 3.7. For a connected noncomplete graph G, if G is triangle-free, then pc(G) =
2.

Proof. We consider two cases:

B the case diam(G) = 3 from Theorem and the case diam(G) = 2 from Theorem
5.0l

Case 2. G is disconnected. The result holds for the case that G contains two com-

Case 1. G is connected. The result holds for the case diam(G) < 4 from Theorem
G

ponents with one of them trivial from Proposition B.6l and holds for the remaining case
from Lemma 24 and Corollary 2.5 O

4 Nordhaus-Gaddum-Type theorem for proper con-

nection number of graphs

Firstly, we characterize the graphs on n vertices that have proper connection number
n — 2. This result is crucial to investigate the Nordhaus-Gaddum-type result for the
proper connection number of G. We use C),,.S,, to denote the cycle and the star graph
on n vertices, respectively, and use T'(a,b) to denote the double star that is obtained by

adding an edge between the center vertices of S, and S,. For a nontrivial graph G such
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that G + uv = G + xy for every two pairs {u, v}, {x,y} of nonadjacent vertices of G, we

use G + e to denote the graph obtained from G by joining two nonadjacent vertices of G.

Theorem 4.1. Let G be a connected graph on n vertices. Then pc(G) = n — 2 if and
only if G is one of the following 6 graphs: T'(2,n — 2),C5,Cy,Cy +€,S, + €, and S5 + e.

Proof. 1f G is one of the above 6 graphs, we can easily check that pc(G) = n — 2. So
it remains to verify the converse of the theorem. Suppose that pc(G) =n —2. If G is
acyclic, from Lemma 23] we know that G = T(2,n — 2). So we may assume that G
contains cycles. Let G* be a spanning unicycle subgraph of G such that the cycle C' in
G* is the longest cycle in G. Without loss of generality, suppose that C' = vjvs ... v,0;
and dg«(v1) > dg=(v;) for i = 2,3,... k. Note that pc(C) = 2 for all £ > 4. Giving C a
proper-path 2-coloring and assigning n — k new colors to the remaining n — k edges of G,
we get a proper-path coloring of G*. It follows that pc(G*) < 2+ n — k. From Lemma
211 we know that pc(G) < pe(G*) < 24 n — k. Thus we can get that pc(G) < n — 2 if
k > 4, contradicting with the fact that pc(G) = n — 2. So we only need to consider that
k=3ork=4.

If k=4, let G = G* — v1v9. One can see that GG; is a spanning tree of G. If n = 4,
then G* = (4. We can get that G = C, or G = (4 + e since the longest cycle of G is
of length 4. So we consider that n > 5. Since dg«(v1) > dg=(v;) for i = 2,3,...,k and
G* is unicycle, we see that A(Gy) < n — 3. So by Lemma 2.1, pc(G) < pe(Gy) < n — 3,
contradicting the fact that pc(G) =n — 2.

Now we consider the case k = 3. Let ¢ be an edge coloring of G* such that the cut
edges are colored by n — 3 distinct colors. If n > 6, that is, G* has more than three
cut edges, choose three colors that have been used on the cut edges, say 1,2,3. Let
c(vive) = 1, c(vgvg) = 2, and c(vsv1) = 3. We know that G* is proper connected under
edge-coloring c¢. Hence pc(G) < pc(G*) < n—3, contradicting the fact that pc(G) = n—2.
So we may assume that n < 5. If n = 5, one can see that G = S5 + e since otherwise
there is a spanning Ps in G, then pc(G) < pc(Ps) = 2, a contradiction. If n = 4, one can
see that G = 54+ e since otherwise there exists a cycle of length 4 in G which contradicts
the assumption k = 3. If n = 3, we know that G = C3 as pc(G) = 1 if and only if G is
complete graph. Hence we have that G = (U5, or G = S; + e, or G = S5 + e when k = 3.

O

We know that if G is a connected graph with n vertices, then the number of edges
in G must be at least n — 1. If both G and G are connected, then n is at least 4, and

A(G) < n—2. Therefore we know that 2 < pc(G) < n — 2. Similarly, 2 < pe(G) < n —2.

Hence we can obtain that 4 < pe(G) + pc(G) < 2(n — 2). For n = 4, we can easily get

9



that pc(G) + pc(G) = 4 if G and G are connected. In the rest of the paper, we always

assume that all graphs have at least 5 vertices, and both G and G are connected.

Lemma 4.2. Let G be a graphs with 5 vertices. If both G and G are connected, one has
that -
5 if G=T(2,3) or G=T(2,3),

4 otherwise.

pe(G) + pe(G) = {

Proof. If G = T(2,3) or G = T(2,3), then it can be easily checked that pc(G)+pc(G) = 5.
From Theorem 1], we know that 7'(2,3) is the only graph on 5 vertices that has proper
connection number 3. Since 2 < pe(G) <n —2 =3 and 2 < pc(G) < n — 2 = 3, then all
the other graphs considered here on 5 vertices has proper connection number 2. Hence

pe(G) +pe(G) =4 if G 2 T(2,3) and G 2 T(2,3). O

Theorem 4.3. pc(G) + pc(G) < n for n > 5, and the equality holds if and only if
G2T(2,n—2) orG=ET(2,n—2).

Proof. By Lemma [£.2] we can see that the result holds if n = 5. So we consider n > 6.
If G = T(2,n—2), G contains a spanning subgraph H that is obtained by attaching a

pendent edge to the complete bipartite graph K5 ,,_3. Then pc(G) = 2 by Lemma 2.4 and
Lemma 7. The result clearly holds. Similarly, we can also get pc(G) + pc(G) = n if
G = T(2,n—2). To prove our conclusion, we only need to show that pc(G) +pc(G) < n if
G2T(2,n—2)and G 2 T(2,n—2). Under this assumption, we know that 2 < pc(G) <
n —3 and 2 < pe(G) < n — 3 by Theorem 11

Suppose first that both G and G are 2-connected. For n = 6, we claim that pc(G) = 2.
Assume that the circumference of G is k. If k£ = 6, one has that pc(G) < pc(Cs) = 2.
If £ = 4, one can see that G contains a spanning Kj4, contradicting the assumption
that G is 2-connected. Assume that G contains a 5-cycle C' = 10903040501, We know
that the vertex vg is adjacent to two vertices that is nonadjacent in C, say vy, v3. Then
P = vgv1v9030405 is a hamilton path of G. Hence pc(G) < pc(P) = 2. So we have that

pc(G) + pe(G) < 2+n—3 < n. For n > 7, by Lemma 2.6 we know that pc(G) < 3 and
pe(G) < 3, and so pe(G) + pe(G) < 6, and therefore pe(G) + pe(G) < n clearly holds.
Now we consider the case that at least one of G and G has cut vertices. Without loss
of generality, suppose that G has cut vertices. We distinguish the following three cases.
Case 1. (G has a cut vertex u such that G — u has at least three components. Let
G1,Ga, ..., Gy (k> 3) be the components of G — u and let n; be the number of vertices
of G; for 1 < i < k with ny < ny < ... < ng. From the definition of G, we know that

G —u contains a spanning complete k-partite graph Koy ns....ny- Since A(G) < n—2, then
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ny > 2. From Corollary 2.5 pe(G — u) = 2, and there exists a 2-edge-coloring ¢ of G — u

that makes it proper connected with the strong property. Hence pc(G) < 2 by Lemma
27 Together with the fact that pe(G) < n — 3, we can get the result pc(G) + pc(G) < n.

Case 2. Each cut vertex u of GG satisfies that G — u has only two components. Let
G'1, G5 be the two components of G — u, and let n; be the number of vertices of G; for
1 =1,2 with n; < no.

subcase 2.1. n; > 2, then G — u contains a spanning 2-connected bipartite graph
Ky ny- From Lemma 4] we know that pe(G — u) = 2 and there exists a 2-edge-coloring
c of G — u that makes it proper connected with the strong property. So by Lemma 2.7,
pc(G) < 2. We can get the result that pe(G) + pe(G) < n.

subcase 2.2. n; = 1, that is, each cut vertex is incident with a pendent edge. Let
ULV, UgVs, . . ., uv; be the pendent edges of G such that v; is the pendent vertices for
1 < i < [. The pendent edges are pairwise disjoint. Let H be the graph obtained from
G by deleting all the pendent vertices. Then H must be 2-connected. By Lemma 2.6
we know that pc(H) < 3 and there exists a 3-edge-coloring ¢ of H that makes it proper
connected with the strong property.

If I > 2, we know that G — {u,us} contains a spanning bipartite subgraph K4
with two parts X = {vy,v2} and Y = V(G) \ {uy, v1,us,v2}. Since vyug, vouy ¢ E(G),

we know that vius,vou; € E(G). Then by Lemma 2.4 and Lemma 7] we have that
pc(G) < 2. By using the fact that pce(G) < n — 3, we have that pe(G) + pe(G) < n.

If [ =1, by Lemma 2.6 and Lemma [Z7], one has that pc(G) < pc(H) < 3. Therefore
we have pc(G) + pe(G) < n. Now we prove that the equality cannot be attained. Note
that dg(v1) = n — 2. We know that G contains Ty as a proper spanning subgraph. Set
Ng(v1) = {z1,-+ ,2p—2} = V(G) \ {u1,v1}. Without loss of generality, assume that
z1u; € E(G). So zyuy € E(G). 1f there is a vertex z; (2 < j < n — 2) that is adjacent to
71 in G, assume without loss of generality that 7125 € E(G). Let c(vir1) = 1, c(z122) =
2,¢(nzy) = c(ruy) = 3 and c(vyz;) =i —2 for i = 3,4--- ;n — 2. One can see that
G is proper connected. If there is a vertex z; (2 < j < n—2) that is adjacent to
u; in G, assume without loss of generality that mouy € E(G). Let c(viz;) = i — 2 for
i=3,4---,n—2and c(nz1) = c(ujzy) = 1,¢c(vix9) = ¢(zqu1) = 2. One can also see
that G is proper connected. If there are two vertex x;, 2 (2 < j < k <n — 2) such that
zjz), € E(G), without loss of generality, assume that zox3 € E(G). Let c(viz;) =i — 2
fori = 4,--- n— 2, c(vixy) = c(vize) = 1,¢(vizs) = c(riuy) = 2 and e(xax3) = 3.
We can check that G is proper connected. Hence we have that pe(G) < max{3,n — 4}.

For n > 7, we can get that pc(G) + pe(G) < 3+n—-—4 =n—-1 < n. Forn = 6,

as H is a 2-connected graph with 5 vertices, one can see that H contains a spanning
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C5 or a spanning Ks3. Hence we can easily get that pc(G) < pe(H) = 2. So we have

pe(G) +pe(G) <2+3 =5 <6. O
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