撰写论文、专著、教材等
部分重要论文: English: [1] Zhuang H, Sun Q, Chen Z, et al. Back-stepping sliding mode control for pressure regulation of oxygen mask based on an extended state observer[J]. Automatica, 2020, 119: 109106. (控制领域顶级期刊,Top期刊,IF:5.9) [2] Li J, Zhang C, Sun Q, et al. Changing the intensity of interaction based on individual behavior in the iterated prisoner’s dilemma game[J]. IEEE Transactions on Evolutionary Computation, 2016, 21(4): 506-517.(中科院1区,Top期刊,IF:11.5) [3] Tao J, Sun Q, Sun H, et al. Dynamic modeling and trajectory tracking control of parafoil system in wind environments[J]. IEEE/ASME Transactions on Mechatronics, 2017, 22(6): 2736-2745.(中科院1区,Top期刊,IF:5.3) [4] Jiang Y, Sun Q, Zhang X, et al. Pressure regulation for oxygen mask based on active disturbance rejection control[J]. IEEE Transactions on Industrial Electronics, 2017, 64(8): 6402-6411.(中科院1区,Top期刊,IF:8.2) [5] Tao J, Liang W, Sun Q L, et al. Modeling and control of a powered parafoil in wind and rain environments[J]. IEEE Transactions on Aerospace and Electronic Systems, 2017, 53(4): 1642-1659.(航空航天领域顶级期刊,中科院1区,Top期刊,IF:4.1) [6] Sun H, Sun Q, Zeng X, et al. Accurate Homing of Parafoil Delivery Systems Based Glide-Ratio Control[J]. IEEE Transactions on Aerospace and Electronic Systems, 2019, 56(3): 2374-2389.(航空航天领域顶级期刊,中科院1区,Top期刊,IF:4.1) [7] Wang X, Jiao X, Liang P, et al. A Liquid-solid Triboelectric Sensor for Minor and Invisible Leakage Monitoring in Ship Pipelines[J]. IEEE Sensors Journal, 2023, 24(3): 3944-3951.(中科院2区,IF:4.3) [8] Sun H, Sun Q, Sun M, et al. Accurate Modeling and Homing Control for Parafoil Delivery System based on Wind Disturbance Rejection[J]. IEEE Transactions on Aerospace and Electronic Systems, 2022, early access.(航空航天领域顶级期刊,中科院1区,Top期刊,IF:4.1) [9] Sun H, Sun Q, Wu W, et al. Altitude control for flexible wing unmanned aerial vehicle based on active disturbance rejection control and feedforward compensation[J]. International Journal of Robust and Nonlinear Control, 2020, 30(1): 222-245.(中科院1区,Top期刊,IF:4.4) [10] Jiao X, Zhao Y, Wang X, et al. Learning-based acoustic displacement field modeling and micro-particle control[J]. Expert Systems with Applications, 2024, 237: 121503.(中科院1区,Top期刊,IF:8.1) [11] Zhu H, Sun Q, Tao J, et al. Fluid-structure interaction simulation for performance prediction and design optimization of parafoils[J]. Engineering Applications of Computational Fluid Mechanics, 2023, 17(1): 2194359.(中科院1区,Top期刊,IF:6.1) [12] Zhu H, Sun Q, Liu X, et al. Fluid–structure interaction-based aerodynamic modeling for flight dynamics simulation of parafoil system[J]. Nonlinear Dynamics, 2021: 1-22.(中科院1区,Top期刊,IF:5) [13] Zhu H, Sun Q, Sun H, et al. Aerodynamic prediction for flight dynamics simulation of parafoil system and airdrop test validation[J]. Nonlinear Dynamics, 2023, 111(12): 11065-11085.(中科院1区,Top期刊,IF:5) [14] Luo S, Sun Q, Sun M, et al. On decoupling trajectory tracking control of unmanned powered parafoil using ADRC-based coupling analysis and dynamic feedforward compensation[J]. Nonlinear Dynamics, 2018, 92(4): 1619-1635.(中科院1区,Top期刊,IF:5) [15] Luo S, Sun Q, Wu W, et al. Accurate flight path tracking control for powered parafoil aerial vehicle using ADRC-based wind feedforward compensation[J]. Aerospace Science and Technology, 2019, 84: 904-915.(中科院1区,Top期刊,IF:4.5) [16] Zheng Y, Tao J, Sun Q, et al. DDPG-based active disturbance rejection 3D path-following control for powered parafoil under wind disturbances[J]. Nonlinear Dynamics, 2023, 111(12): 11205-11221.(中科院1区,Top期刊,IF:5) [17] Tao J, Sun Q, Tan P, et al. Active disturbance rejection control (ADRC)-based autonomous homing control of powered parafoils[J]. Nonlinear dynamics, 2016, 86(3): 1461-1476.(中科院1区,Top期刊,IF:5) [18] Zhu E, Sun Q, Tan P, et al. Modeling of powered parafoil based on Kirchhoff motion equation[J]. Nonlinear Dynamics, 2015, 79(1): 617-629.(中科院1区,Top期刊,IF:5) [19] Wu W, Sun Q, Sun M, et al. Modeling and control of parafoils based on computational fluid dynamics[J]. Applied Mathematical Modelling, 2019, 70: 378-401.(中科院1区,Top期刊,IF:5.1) [20] Tao J, Sun Q, Liang W, et al. Computational fluid dynamics based dynamic modeling of parafoil system[J]. Applied Mathematical Modelling, 2018, 54: 136-150.(中科院1区,Top期刊,IF:5.1) [21] Zheng Y, Tao J, Sun Q, et al. Sideslip angle estimation based active disturbance rejection 3D trajectory tracking control for powered parafoil system and hardware-in-the-loop simulation verification[J]. Aerospace Science and Technology, 2023, 141: 108497.(中科院1区,Top期刊,IF:4.5) [22] Sun H, Sun Q, Luo S, et al. In-flight compound homing methodology of parafoil delivery systems under multiple constraints[J]. Aerospace Science and Technology, 2018, 79: 85-104.(中科院1区,Top期刊,IF:4.5) [23] Sun H, Luo S, Sun Q, et al. Trajectory optimization for parafoil delivery system considering complicated dynamic constraints in high-order model[J]. Aerospace Science and Technology, 2020, 98: 105631.(中科院1区,Top期刊,IF:4.5) [24] Zhuang H, Sun Q, Chen Z, et al. Robust adaptive sliding mode attitude control for aircraft systems based on back-stepping method[J]. Aerospace Science and Technology, 2021, 118: 107069.(中科院1区,Top期刊,IF:4.5) [25] Sun H, Wang F, Sun Q, et al. Distributed consensus algorithm for multiple parafoils in mass airdrop mission based on disturbance rejection[J]. Aerospace Science and Technology, 2021, 109: 106437. (中科院1区,Top期刊,IF:5.1) [26] Zhu H, Sun Q, Tao J, et al. Flexible modeling of parafoil delivery system in wind environments[J]. Communications in Nonlinear Science and Numerical Simulation, 2022, 108: 106210.(中科院1区,Top期刊,IF:4.2) [27] Sun Q, Yu L, Tao J, et al. Trajectory tracking control of powered parafoil system based on sliding mode control in a complex environment[J]. Aerospace Science and Technology, 2022, 122: 107406.(中科院1区,Top期刊,IF:5.1) [28] Zheng Y, Tao J, Hartikainen J, et al. DDPG based LADRC trajectory tracking control for underactuated unmanned ship under environmental disturbances[J]. Ocean Engineering, 2023, 271: 113667.(中科院1区,Top期刊,IF:5) [29] Li J, Zhang C, Sun Q, et al. Coevolution between strategy and social networks structure promotes cooperation[J]. Chaos, Solitons & Fractals, 2015, 77: 253-263.(中科院1区,Top期刊,IF:5.9) [30] Zheng Y, Tao J, Sun Q, et al. An intelligent course keeping active disturbance rejection controller based on double deep Q‐network for towing system of unpowered cylindrical drilling platform[J]. International Journal of Robust and Nonlinear Control, 2021, 31(17): 8463-8480.(中科院1区,Top期刊,IF:4.4) [31] Yu Z, Tan P, Sun Q, et al. Longitudinal wind field prediction based on DDPG[J]. Neural Computing and Applications, 2022, 34(1): 227-239.(中科院2区,IF:5.6) [32] Zheng Y, Sun Q, Chen Z, et al. Deep Q-Network based real-time active disturbance rejection controller parameter tuning for multi-area interconnected power systems[J]. Neurocomputing, 2021, 460: 360-373.(中科院2区,IF:5.7) [33] Zheng Y, Tao J, Sun Q, et al. Deep reinforcement learning based active disturbance rejection load frequency control of multi-area interconnected power systems with renewable energy[J]. Journal of the Franklin Institute, 2023, 360(17): 13908-13931.(中科院2区,IF:4.3) [34] Li J, Zhang C, Sun Q, et al. Changing intensity of interaction can resolve prisoner's dilemmas[J]. EPL (Europhysics Letters), 2016, 113(5): 58002. (中科院3区,IF:1.9) [35] Zhuang H, Sun Q, Chen Z. Sliding mode control for electro‐hydraulic proportional directional valve‐controlled position tracking system based on an extended state observer[J]. Asian Journal of Control, 2021, 23(4): 1855-1869.(中科院3区,IF:3.4) [36] Zhuang H, Sun Q, Chen Z, et al. Active disturbance rejection control for attitude control of missile systems based on back-stepping method[J]. International Journal of Control, Automation and Systems, 2021, 19(11): 3642-3656.(中科院3区,IF:3.3) [37] Zhuang H, Sun Q, Chen Z, et al. Back-stepping Active Disturbance Rejection Control for Attitude Control of Aircraft Systems Based on Extended State Observer[J]. International Journal of Control, Automation and Systems, 2021, 19(6): 2134-2149.(中科院3区,IF:3.3) [38] Sun H, Sun Q, Chen Z, et al. An optimal‐multiphase homing methodology for powered parafoil systems[J]. Optimal Control Applications and Methods, 2020, 41(4): 1118-1142.(中科院3区,IF:2.5) [39] Tan P, Sun Q, Chen Z, et al. Characteristic model–based generalized predictive control and its application to the parafoil and payload system[J]. Optimal Control Applications and Methods, 2019, 40(4): 659-675.(中科院3区,IF:2.5) [40] Luo S, Tan P, Sun Q, et al. In-flight wind identification and soft landing control for autonomous unmanned powered parafoils[J]. International Journal of Systems Science, 2018, 49(5): 929-946.(中科院3区,IF:2.2) [41] Sun H, Sun Q, Wu W, et al. Flexible modelling and altitude control for powered parafoil system based on active disturbance rejection control[J]. International Journal of Systems Science, 2019, 50(12): 2385-2408.(中科院3区,IF:2.2) [42] Wu W, Sun Q, Luo S, et al. Accurate calculation of aerodynamic coefficients of parafoil airdrop system based on computational fluid dynamic[J]. International Journal of Advanced Robotic Systems, 2018, 15(2): 1729881418766190.(中科院4区,IF:1.6) [43] Zhu H, Sun Q, Tao J, et al. Fluid-Structure Interaction Simulation and Accurate Dynamic Modeling of Parachute Warhead System Based on Impact Point Prediction[J]. IEEE Access, 2021, 9: 104418-104428.(中科院3区,IF:3.3) [44] Sun H, Sun Q, Tao J, et al. A hybrid control approach for powered parafoil combining active disturbance rejection control and unbalanced load compensation[J]. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, 2018, 232(3): 299-314.(中科院4区,IF:1.7) [45] Luo S, Sun Q, Tan P, et al. Soft landing control of unmanned powered parafoils in unknown wind environments[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2019, 233(3): 949-968.(中科院4区,IF:1) [46] Zhuang H, Sun Q, Chen Z, et al. Sliding Mode Robust Control for Maximum Allowable Vertical Tail Damage to Aircraft Based on Linear Matrix Inequality[J]. Journal of Aerospace Engineering, 2021, 34(4): 05021001.(中科院3区,IF:1.9) [47] Liu S, Wang L, Li C, et al. Disturbance Rejection Control With Voltage Constraint for Electro-Hydraulic System Involving Unknown Dead-Zones and Drastic Supply Pressure Variation[J]. IEEE Access, 2020, 8: 84551-84568.(中科院3区,IF:3.3) [48] Tao J, Sun Q, Chen Z, et al. NSGAII based multi-objective homing trajectory planning of parafoil system[J]. Journal of Central South University, 2016, 23(12): 3248-3255.(中科院3区,IF:1.7) [49] Tao J, Sun Q, Chen Z, et al. Dynamic modeling of a parafoil system considering flap deflection[J]. Journal of Southeast University, 2017, 33(4): 416-425.(中科院3区,IF:1.7)
Chinese: [1] 檀盼龙,孙青林,高海涛,陈增强.动力翼伞系统空投风场的辨识与应用[J].航空学报,2016,37(07):2286-2294. [2] 罗淑贞,孙青林,檀盼龙,陶金,贺应平,罗浩文.基于高斯伪谱法的翼伞系统复杂多约束轨迹规划[J].航空学报,2017,38(03):220-230. [3] 陶金,孙青林,陈增强,贺应平.翼伞系统在较大风场中的归航控制[J].控制理论与应用,2016,33(12):1630-1638. [4] 孙青林,梁炜,陶金,罗淑贞,陈增强,贺应平.基于CFD与最小二乘法的翼伞动力学建模[J].北京理工大学学报,2017,37(02):157-162+167. [5] 陶金,孙青林,檀盼龙,邬婉楠,陈增强,贺应平.翼伞系统在未知风场中的归航控制[J].航空学报,2017,38(05):191-201. [6] 孙青林,梁炜,陈增强,贺应平.襟翼偏转翼伞气动性能数值模拟分析[J].哈尔滨工业大学学报,2017,49(04):48-54. [7] 孙青林,梁炜,陶金,罗淑贞,陈增强,贺应平.基于CFD的风雨环境翼伞动力学建模[J].中南大学学报(自然科学版),2017,48(08):2053-2062. [8] 陶金,孙青林,陈增强,贺应平.基于LADRC的翼伞系统轨迹跟踪控制[J].哈尔滨工程大学学报,2018,39(03):510-516. [9] 陶金,孙青林,陈增强,贺应平.伞翼无人机线性自抗扰高度控制[J].国防科技大学学报,2017,39(06):103-110. [10]孙青林,陈赛,孙昊,陈增强,孙明玮,檀盼龙.复杂扰动下的动力翼伞轨迹跟踪控制[J].哈尔滨工程大学学报,2019,40(07):1319-1326. [11]朱虹,孙青林,邬婉楠,孙明玮,陈增强.伞翼无人机精确建模与控制[J].航空学报,2019,40(06):79-91. [12]孙昊,孙青林,滕海山,周朋,陈增强.复杂环境下考虑动力学约束的翼伞轨迹规划[J].航空学报,2021,42(03):372-381. [13]刘胜斐,孙青林,陈增强,丁祉峰.比例阀控电液系统抗扰换向滞后补偿反步控制[J].控制理论与应用,2020,37(07):1521-1534. [14]范俞超,孙青林,董方酉,陈增强.基于粒子群算法–反向传播神经网络自适应的氧调器控制系统[J].控制理论与应用,2020,37(03):687-695. [15]孙青林,梁炜,陈增强,贺应平.襟翼偏转翼伞气动性能数值模拟分析[J].哈尔滨工业大学学报,2017,49(04):48-54.
|