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Vertex partitions of r-edge-colored graphs

JIN Ze-min1,2 LI Xue-liang1

Abstract. Let G be an edge-colored graph. The monochromatic tree partition problem is to

find the minimum number of vertex disjoint monochromatic trees to cover the all vertices of

G. In the authors’ previous work, it has been proved that the problem is NP-complete and

there does not exist any constant factor approximation algorithm for it unless P = NP . In this

paper the authors show that for any fixed integer r ≥ 5, if the edges of a graph G are colored

by r colors, called an r-edge-colored graph, the problem remains NP-complete. Similar result

holds for the monochromatic path (cycle) partition problem. Therefore, to find some classes of

interesting graphs for which the problem can be solved in polynomial time seems interesting.

A linear time algorithm for the monochromatic path partition problem for edge-colored trees is

given.

§1 Introduction

Many graph partition problems and their corresponding computational complexity problems

have been well studied in [3,5], most of which were shown to be NP-complete. A list of graph

partition problems can be found in the book [5].

Some researchers also focused on graph partition problems in edge-colored graphs[4,6−8,11].

The aim is to find some kind of vertex disjoint monochromatic subgraphs (e.g. trees, cycles, or

paths) to cover all the vertices of the given graph. Motivated by the results of [4,7,8,11], Jin

and Li[9] considered the following problems: Given an edge-colored graph G, find the minimum

number of vertex disjoint monochromatic trees, cycles, paths, respectively, which cover the

vertices of G. For convenience, these three problems are addressed as PGMT, PGMC, PGMP

problem, respectively. Jin and Li[9] showed that all these three problems are NP-hard and there

does not exist constant factor approximation algorithm for any of these three problems unless

P = NP .

Note that PGMT problem looks like the problem of partitioning a graph into induced

forests[5]. But actually it is not the case. The following facts are easily seen. If G is colored
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properly, i.e., any adjacent edges receive different colors, both PGMT and PGMP problems are

equivalent to the maximum matching problem which can be solved in polynomial time[5]. If G

is colored with one color, PGMT problem is equivalent to the spanning tree problem and can be

solved in polynomial time, while PGMC and PGMP problems are equivalent to the Hamiltonian

cycle and Hamiltonian path problems, respectively, and both of them are NP-complete. Jin

and Li[9] asked the following problem: Does PGMT (PGMC, or PGMP) problem remain to

be NP-complete when G is colored with two colors? Jin and Li[10] solved the problems for

2-edge-colored complete multipartite graphs. In this paper we show that for any fixed integer

r ≥ 5, if the edges of a graph G are colored by r colors(called an r-edge-colored graph), these

three problems remain to be NP-complete.

Note that the problem of partitioning edge-colored graphs by vertex disjoint monochromatic

subgraphs (e.g. paths) seems to be more difficult than the corresponding problem in uncolored

graphs. Though the path partition problem (i.e., to partition graphs into minimum number

of vertex disjoint paths which cover all the vertices of the given graphs) can be solved in

polynomial time for some classes of special graphs[1,2,12−14], it is open for the monochromatic

path partition problem. So, it becomes an interesting question to identify graph classes for

which there exist polynomial time algorithms for solving the above problems. In §3, we give a

linear time algorithm to the monochromatic path partition problem for edge-colored trees.

§2 NP-completeness results

At first, we focus on PGMT problem. The corresponding decision version is defined formally

as follows.

PGMT Problem

Instance: An edge-colored graph G and a positive integer k.

Question: Are there k or less vertex disjoint monochromatic trees which cover the vertices of

the graph G ?

The decision versions of PGMC and PGMP problems can be defined in a similar way. Let

r be a fixed positive integer. If G is an r-edge-colored graph, we call the corresponding PGMT

problem as r-PGMT problem. The r-PGMC and r-PGMP problems can be defined similarly.

Here we have the following NP-completeness results stronger than those in [9], which are based

on the results that the vertex cover problem is NP-complete for any planar graphs and the

famous 4-color Theorem.

Theorem 2.1. For any fixed integer r ≥ 5, the r-PGMT problem remains NP-complete.

Proof. The problem is clear in NP, since a nondeterministic algorithm needs only to guess a set

of trees and check in polynomial time that the trees in the set are vertex disjoint monochromatic

ones and cover the vertices of the given graph.

Now we transform the vertex cover problem for planar graphs (which is NP-complete[5]) to

PGMT problem. Let an arbitrary instance of the vertex cover problem for planar graphs be

given by a graph H . Here we construct an r-edge-colored graph G such that there are k or

less vertices of H which cover all the edges of H if and only if G contains k + 1 or less vertex

disjoint monochromatic trees which cover the vertices of G.
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Let V (H) = {v1, v2, · · · , vn} and E(H) = {e1, e2, · · · , em}. The graph G is constructed as

follows:

V (G) = {v1, v2, · · · , vn, e1, e2, · · · , em}, E(G) = E1 ∪ E2

where E1 = {vivj , 1 ≤ i 6= j ≤ n}, E2 = {viej : vi is incident to ej in H}.

Without loss of generality, we may assume that |V (H)| is large enough. Then, since r ≥ 5

and H is planar, by the famous 4-Color Theorem we have V (H) = V1 ∪ V2 ∪ · · · ∪ Vr−1, where

Vi ∩ Vj = ∅ for any i 6= j and Vi, i = 1, 2, · · · , r − 1, is a nonempty independent set of H .

Color the edges of G by r colors c1, c2, · · · , cr as follows. At first, color all the edges of E1

by the color cr. Let viej ∈ E(G) and vi ∈ Vl, 1 ≤ l ≤ r − 1. Then color the edge viej by the

color cl. It is easy to see that the construction can be accomplished in polynomial time and

the edges of G are colored by r colors. We claim that there are k or less vertices in H which

cover all the edges of H if and only if G contains k + 1 or less vertex disjoint monochromatic

trees which cover the vertices of G.

If there are k vertices of H which cover all the edges of H , it is easy to see that G contains

k + 1 or less vertex disjoint monochromatic trees which cover the vertices of G.

Suppose that G contains k + 1 vertex disjoint monochromatic trees denoted by

Γ = {T1, T2, · · · , Tk+1},

which cover the vertices of G. From the construction and the given edge-coloring of G, each

tree in Γ containing a vertex cj contains at most one vertex vi for some 1 ≤ i ≤ n. If k ≥ n,

the claim is true. So, we assume that k < n.

Let Ti, i = 1, 2, · · · , t, t ≤ k < n, be the trees, each of which contains an edge vpeq for

some 1 ≤ p ≤ n and 1 ≤ q ≤ m. Without loss of generality, we can assume that vi ∈ Ti,

i = 1, 2, · · · , t. If for any t + 1 ≤ j ≤ k + 1, Tj is not composed of a single vertex er for some

1 ≤ r ≤ m, then it is easy to see that vi, i = 1, 2, · · · , t cover all the edges of H . Suppose

that Tt+i, i = 1, 2, · · · , t
′

, is composed of a single vertex er for some 1 ≤ r ≤ m. Without loss

of generality, we can assume that V (Tt+i) = {ei}, i = 1, 2, · · · , t
′

. Then t + t
′

≤ k < n, since

there is some vertex vs /∈ V (Tj) for any t ≤ j ≤ t + t
′

. For each ei, 1 ≤ i ≤ t
′

, find a vertex

vpi
incident to it. It is easy to see that the vertex sets {v1, v2, · · · , vt, vp1

, vp2
, · · · , vp

t
′
} form an

vertex cover of H with size at most k. This completes the proof.

By the same technique, one can show that the problem of finding the minimum number

of vertex disjoint monochromatic stars to cover the vertices of an r-edge-colored graph is also

NP-complete. For r-PGMC problem we have the following result.

Theorem 2.2. For any fixed integer r ≥ 5, the r-PGMC problem remains NP-complete.

Proof. The problem is clear in NP, since a nondeterministic algorithm needs only to guess

a set of cycles and check in polynomial time that the cycles in the set are vertex disjoint

monochromatic ones which cover the vertices of the given graph.

Now we transform the vertex cover problem for planar graphs (which is NP-complete[5]) to

PGMC problem. Let an arbitrary instance of the vertex cover problem for planar graphs be

given by a planar graph H . Here we construct an r-edge-colored multi-graph G such that there

are k or less vertices of H which cover all the edges of H if and only if G contains k + 1 or less
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vertex disjoint monochromatic cycles which cover the vertices of G.

Let V (H) = {v1, v2, · · · , vn} and E(H) = {e1, e2, · · · , em}. Construct the multi-graph G as

follows:

V (G) = {e1, e2, · · · , em, e∗1, e
∗

2, · · · , e
∗

m, e∗∗1 , e∗∗2 , · · · , e∗∗m , v1, v2, · · · , vn, u, v, w}.

Without loss of generality, we may assume that |V (H)| is large enough. Then, since r ≥ 5

and H is planar, by the famous 4-Color Theorem we have V (H) = V1 ∪ V2 ∪ · · · ∪ Vr−1, where

Vi ∩ Vj = ∅ for any i 6= j and Vi, i = 1, 2, · · · , r − 1, is a nonempty independent set of H .

Next, construct and color the edges of G as follows:

(1) If ei is incident to vj in H and vj ∈ Vl, 1 ≤ i ≤ m, 1 ≤ j ≤ n, 1 ≤ l ≤ r − 1, then each

of the vertices ei, e
∗

i and e∗∗i is connected to vj by an edge with color cl in G.

(2) For each vertex v with v ∈ Vl, 1 ≤ l ≤ r − 1, let I(v) = {i : ei is incident to v in H}.

Then construct a complete graph with vertex set {ei : i ∈ I(v)}∪{e∗i : i ∈ I(v)}∪{e∗∗i : i ∈ I(v)},

whose edges are colored by the same color cl. So, in general what we constructed is a multi-

graph.

(3) Construct a complete graph with vertex set {v1, v2, · · · , vn, u, v, w}, whose edges are

colored by the same color cr.

It is easy to show that the construction can be accomplished in polynomial time and the

edges of G are colored by r colors. We claim that there are k or less vertices of H which cover

all the edges of H if and only if G contains k + 1 or less vertex disjoint monochromatic cycles

which cover the vertices of G.

If there are k vertices of H which cover all the edges of H , it is easy to find that G contains

k + 1 vertex disjoint monochromatic cycles which cover the vertices of G.

Suppose that G contains k + 1 vertex disjoint monochromatic cycles denoted by Γ =

{C1, C2, · · · , Ck+1}, which cover the vertices of G. From the construction and the given edge-

coloring of G, each cycle in Γ containing a vertex ej contains at most one vertex vi for some

1 ≤ i ≤ n. If k ≥ n, we are done. So, we assume that k < n.

Let Ci, i = 1, 2, · · · , t, be the cycles containing some edges epvq, e∗pvq, or e∗∗p vq. From the

construction we have that none of u, v and w can lie in any Ci, i = 1, 2, · · · , t and each Ci,

i = 1, 2, · · · , t, contains a unique vertex vq for some 1 ≤ q ≤ n. Without loss of generality, we

can assume that vi ∈ Ci, i = 1, 2, · · · , t. If Cj contains no vertex of {e1, e2, · · · , em} for any

t + 1 ≤ j ≤ k + 1, then it is easy to see that vi, i = 1, 2, · · · , t cover all the edges H . So,

we assume that Ct+i, i = 1, 2, · · · , t
′

, are the cycles, each of which only contains vertices of

{e1, e2, · · · , em, e∗1, e
∗

2, · · · , e
∗

m, e∗∗1 , e∗∗2 , · · · , e∗∗m }. Since none of u, v and w can lie in any Ct+i,

i = 1, 2, · · · , t
′

, it is easy to see that t + t
′

≤ k. Consider the cycle Ct+i, i = 1, 2, · · · , t
′

.

Denote the color of the cycle Ct+i by cri
, i = 1, 2, · · · , t

′

. Let Ii = {j | Ct+i ∩ {ej , e
∗

j , e
∗∗

j } 6=

∅}. Then each edge ej , j ∈ Ii, is incident to vri
in H . It is easy to see that the subsets

v1, v2, · · · , vt, vri
, i = 1, 2, · · · , t

′

form a vertex cover of H . This completes the proof.

By the same proof technique, we can prove the following result. For simplicity, we omit the

details.

Theorem 2.3. For any fixed integer r ≥ 5, the r-PGMP problem remains NP-complete.
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Remark. From the above proofs we can see that there are at most two colors appearing at

each vertex in the constructed edge-colored graph G. So, as a consequence we get that all the

r-PGMT, r-PGMC and r-PGMP problems are NP-complete for edge-colored graphs in which

there are at most two colors appearing at each vertex.

Note that we have determined the complexity of PGMT problem for r ≥ 5. For the rest

cases, the complexity remains unknown.

§3 Linear time algorithm for edge-colored trees

In this section we present a linear time algorithm for PGMP problem with edge-colored

trees. At first, we establish some edge-deletion rules and an edge-contraction rule, which are

the base for our algorithm. These rules characterize the edges that can be deleted or contracted

from the given tree without affecting its minimum number of vertex disjoint monochromatic

paths to cover all the vertices. Applied to an initially given edge-colored tree T , the edge-

deletion rules delete some vertex disjoint monochromatic paths from the current tree, which

together form a set of vertex disjoint monochromatic paths. From the edge-contraction rule we

can find an optimal partition of the initial tree.

Throughout this section we assume that the edge-colored tree T is arranged on the plane by

BFS. For each edge e, denote its color by c(e). We treat a path containing only one vertex as a

monochromatic path. A monochromatic path partition is called optimal if it has the minimum

number of vertex disjoint monochromatic trees which together cover all the vertices.

Suppose that the vertex u has vertices u1, u2, · · · , us as its sons, s ≥ 1, all of which are

leaves. Denote by v the father of the vertex u if there exists. We have the following lemmas.

Lemma 3.1. If no two edges incident to u have the same color, then there is an optimal

monochromatic path partition P of T such that {P1, P2, · · · , Ps} ⊆ P , where V (P1) = {u, u1}

and V (Pi) = {ui}, i = 2, · · · , s. Let H = T − {u, u1, u2, · · · , us}, a tree. Then PH = P \

{P1, P2, · · · , Ps} is an optimal monochromatic path partition of H .

Proof. Let P be an optimal monochromatic path partition of T and u ∈ V (P ), P ∈ P . Since

no two edges incident to u have the same color, u must be an end of the path P , and P contains

at least two vertices. If uv ∈ E(P ), then Qi ∈ P , V (Qi) = {ui}, i = 1, 2, · · · , s. By deleting

the vertex u from P and replacing the path Q1 by path P1, we obtain the desired partition.

If uui ∈ P for some 1 ≤ i ≤ s, then V (P ) = {u, ui} and Qj ∈ P , V (Qj) = {uj}, j 6= i. If

i 6= 1, by replacing the paths P and Q1 by paths P1 and Pi, respectively, we obtain the desired

partition still denoted by P . Let H = T − {u, ui, i = 1, 2, · · · , s}, a tree. It is easy to see that

PH = P \ {P1, P2, · · · , Ps} is an optimal monochromatic path partition of H .

By the same proof technique, we can prove the following two lemmas. For simplicity, we

omit the details.

Lemma 3.2. If c(uui) = c(uuj) for some i 6= j, then there is an optimal monochromatic path

partition P of T such that Pl ∈ P , V (Pl) = {ul}, i 6= l 6= j, and Pij ∈ P , V (Pij) = {ui, u, uj}.

Let H = T − {u, u1, u2, · · · , us}, a tree. Then PH = P \ {Pij , Pl, i 6= l 6= j} is an optimal

monochromatic path partition of H .
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Lemma 3.3 If c(uv) = c(uul) for some 1 ≤ l ≤ s and c(uui) 6= c(uuj) for any i 6= j, then there

is an optimal monochromatic path partition P of T such that Pi ∈ P , V (Pi) = {ui}, i 6= l. Let

H = T − {ui : i 6= l}, a tree. Then PH = P \ {Pi : i 6= l} is an optimal monochromatic path

partition of H .

An edge e of T is said to be contracted if it is deleted and its ends are identified, the resulting

graph is denoted by T • e. Let e ∈ E(T ) and P be a path partition of T , let e ∈ E(P ), P ∈ P ,

and let P • e = (P \ {P}) ∪ {P • e}. We have the following lemma.

Lemma 3.4. If s = 1 and c(uv) = c(uu1), then in any optimal monochromatic path partition

P of T the edge uu1 is contained in a path of P , and P • uu1 is an optimal monochromatic

path partition of T • uu1.

Proof. Let P be an arbitrary optimal monochromatic path partition of T , and P be the path

containing u in P . Since s = 1 and c(uv) = c(uu1), P contains the edge c(uu1). Otherwise we

can get a monochromatic path partition with fewer paths. It is easy to see that P • uu1 is an

optimal monochromatic path partition of T • uu1.

Now we give our algorithm for partitioning an edge-colored tree by monochromatic paths.

Algorithm MPPT: Find an optimal monochromatic path partition of an edge-colored tree.

Input: An edge-colored tree T .

Output: An optimal monochromatic path partition of T .

Step 1. Arrange T on the plane by BFS, and set P = ∅.

Step 2. Let u be a vertex with sons u1, u2, · · · , us, s ≥ 1, all of them lie on the bottom level. If

u is not the root, denote by v the father of u.

2.1. If any two edges incident to u have different colors, then do

P ← P ∪ {ui, i 6= 1} ∪ {uu1}, T ← T − {u, u1, u2, · · · , us};

2.2. If c(uui) = c(uuj) for some i 6= j, then do

P ← P ∪ {ul, l 6= i, l 6= j} ∪ {uiuuj}, T ← T − {u, u1, u2, · · · , us};

2.3. If c(uv) = c(uul) for some 1 ≤ l ≤ s and c(uui) 6= c(uuj) for any i 6= j, then do

P ← P ∪ {ui, i 6= l}, T ← T − {ui, i 6= l};

2.4. If s = 1 and c(uv) = c(uu1), then do T ← T • uu1.

Step 3. If T is not a vertex, go to Step 2. Otherwise, stop !

Theorem 3.5. Algorithm MPPT finds an optimal monochromatic path partition of an edge-

colored tree in linear time.

Proof. The correctness of the algorithm follows from Lemmas 3.1 through 3.4. For the time

complexity we note that it depends mainly on Steps 2.1-2.4 for some vertex with all sons on

the bottom level. Since for each vertex u with all the sons in the bottom level, Steps 2.1-2.4

can be done in O(d(u)) time, our Algorithm MPPT runs in linear time.

Note that modifying the algorithm slightly, we can solve the monochromatic tree partition

problem for edge-colored trees in linear time.

§4 Concluding remarks

The problems described above are applicable in our real world. In communication networks

there are many different types of communication medium, such as optic fiber, cable, microwave,
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telephone line and so on. A communication vertex may communicate with different vertices

by different types of communication medium. In a communication network there frequently

arises a situation where some information must be communicated from some vertices to all

other vertices in the network. Suppose that all communication is done subject to the following

restrictions:

(1) a vertex may participate in the communication by only one medium;

(2) a vertex may only send the message to an adjacent vertex.

We focus on the problem of determining the minimum number of message originators nec-

essary to complete the communication. This problem can be formulated as PGMP problem.

The algorithm presented in §3 can be used to find in linear time the minimum number of the

necessary message originators, from which message is sent to all other vertices in a tree network.
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