Issue 4, 2015

Pyrite FeS2 for high-rate and long-life rechargeable sodium batteries

Abstract

It is desirable to develop electrode materials for advanced rechargeable batteries with low cost, long life, and high-rate capability. Pyrite FeS2, as an easily obtained natural mineral, has been already commercialized in primary lithium batteries, but encountered problems in rechargeable batteries with carbonate-based electrolytes due to the limited cycle life caused by the conversion-type reaction (FeS2 + 4M → Fe + 2M2S (M = Li or Na)). Herein, we demonstrate that FeS2 microspheres can be applied in room-temperature rechargeable sodium batteries with only the intercalation reaction by simultaneously selecting a compatible NaSO3CF3/diglyme electrolyte and tuning the cut-off voltage to 0.8 V. A surprisingly high-rate capability (170 mA h g−1 at 20 A g−1) and unprecedented long-term cyclability (∼90% capacity retention for 20 000 cycles) has been obtained. We suggest that a stable electrically conductive layer-structured NaxFeS2 was formed during cycling, which enables the highly reversible sodium intercalation and deintercalation. Moreover, 18650-type sodium batteries were constructed exhibiting a high capacity of ∼4200 mA h (corresponding to 126 W h kg−1 and 382 W h L−1) and a capacity retention of 97% after an initial 200 cycles at 4 A during charge–discharge. This shows that the production of rechargeable sodium batteries with FeS2 microspheres is viable for commercial utilization.

Graphical abstract: Pyrite FeS2 for high-rate and long-life rechargeable sodium batteries

Supplementary files

Article information

Article type
Paper
Submitted
28 Nov 2014
Accepted
26 Jan 2015
First published
27 Jan 2015

Energy Environ. Sci., 2015,8, 1309-1316

Author version available

Pyrite FeS2 for high-rate and long-life rechargeable sodium batteries

Z. Hu, Z. Zhu, F. Cheng, K. Zhang, J. Wang, C. Chen and J. Chen, Energy Environ. Sci., 2015, 8, 1309 DOI: 10.1039/C4EE03759F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements