Research

Our research group has been trying to identify new electronic materials with high mobilities or high dielectric constants with the purpose of fabricating high-performance low-power devices, as well as exploring exotic physical properties. Currently, our research interests include:


1. High-mobility & High-K 2D materials;

2. Van der Waals integration for high-performance devices;

3. New synthetic strategies for chemical vapor deposition;

4. Wafer-scale single-crystalline thin films. 

PersonalProfile

2008.09-2012.06 bachelor @ Nankai university

2012.09-2017.06  PhD @ Peking University (Supervisor: Prof. Hailin Peng & Prof. Zhongfan Liu)

2017.07-2019.06  Post Dr. @ Peking University

2019.09-, Professor, PI@ Nankai University

Representative results


Works after being PI (* corresponding author)


26.  Zhang, L .; Wu, J.* , et al. Vertically grown metal nanosheets integrated with atomic-layer-deposited dielectrics for transistors with sub-nanometre capacitance-equivalent thicknesses. Nature Electronics, 2024, 7, 662-670.

25.  Dong, X.;  Wu, J.* ; Fu, H.*. Bi3O2.5Se2:A Two-Dimensional High-Mobility Polar Semiconductor with Large Interlayer and Interfacial Charge Transfer, Nanoscale, 2024,  16, 14766–14774.

24.  Li, Y.#; Li J.#; Ai, W.#, Wu, J.*; Cheng, F.*; Wang, H.*, et al. Sequentially regulating potential-determining step for lowering CO2 electroreduction overpotential over Te-doped Bi nanotips, Angew. Chem. Int. Ed, 2024, 63, 36, e202407772.

23.  Chen, J.; Wu, J.* , et al. Controlled synthesis of ultrathin Bi2Ge(Si)O5 dielectric alloys with composition-tunable high-κ properties. J. Am. Chem. Soc. 2024, 146, 16, 11523–11531

22.   Meng, K#.; Huang, J.*; Wu, J.*; Yuan H.*, et al. Gate-tunable  Berry curvature in van der Waals Itinerant Ferromagnetic Cr7Te8. InfoMat, 2024, e12524.

21.  Dong, X; Wu, J.*; Fu, H.*, Yan, B.*, et al. Exploring the high dielectric performance of Bi2SeO5: from bulk to bilayer and monolayer. Science China Materials, 2024, doi.org/10.1007/s40843-023-2737-8. 

20.  Ai, W#, Fu, H. X*, Luo, F*, Deng, M. X.*, Wu, J.*, et al. Observation of giant room-temperature anisotropic magnetoresistance in  the topological insulator beta-Ag2Te. Nature Communications, 2024, 15: 1259.

19. Zhang, L#, He, Y.#, Zhou, Z*, Luo, F*, Wu, J.*, et al. Controlled synthesis of a high-mobility Bi3O2.5Se2 semiconductor by oxidation of Bi2Se3 for fast and highly sensitive photodetectors. Laser Photonics & Reviews, 2024, 18: 2300854.

18. Chen, J., Wu, J.*, et alVertically grown ultrathin Bi2SiO5 as high-κ single-crystalline gate dielectric. Nature Communications, 2023, 14, 4406 (Feature article).

17. He, Y., Zhou, Z.*, Wu, J.*, et al. The discovery of a high-mobility two-dimensional bismuth oxyselenide semiconductor and its application in nonvolatile neuromophic devices. ACS Nano, 2023, 17, 10783.

16.  Zhang, Z#; Dong, X#;  Du, Y.*, Fu, H.*, Luo, F.*,,Wu, J.*,et alTransferred polymer-encapsulated metal electrodes for electrical transport measurements on ultrathin air-sensitive crystals. Small Methods2023, 2300177.

15. Zhang, L#; Fu. X.*; Yuan H.*,Wu, J.*,et alTemperature-driven reversible structural transformation and conductivity switching in ultrathin Cu9S5 crystals. Nano Research, 2023, 16,10515.

14. Ai, W.; Wu, J.*, et al. High mobility and quantum oscillations in semiconducting Bi2O2Te nanosheets grown by chemical vapor deposition. Nano Letters2022, 18, 7659.

13. Gao, Z.; Wu, J.*Luo, F.*, et alLarge and Tunable Magnetoresistance in Cr1-xTe/Al2O3/Cr1-xTe Vertical Spin Valve Device. Advanced Electronic Materials, 2022, 9,  2200823.

12. Zhang, Z#; Dong, X#; Fu, H.*; Du, Y.*,Wu, J.*,et alFerromagnetic Order in Semiconducting Cr-doped a-MnTe Nanosheets Grown by Chemical Vapor Deposition. Advanced Electronic Materials, 2022:2200451.

11. Gao, Z.; Yuan, H.*; Wu, J.*Luo, F.*, et al. Near room-temperature ferromagnetism in air-stable two-dimensional Cr1-xTe grown by chemical vapor deposition. Nano Research, 2022, 15,3763.

10. Zhang, C.;Wu, J.* Peng, H.*, et al. High-mobility flexible oxyselenide thin-film transistors prepared by solution- assisted  method. J. Am. Chem. Soc., 2020, 142, 6, 2726.

 

Works before being PI


9.  Wu, J.; Peng, H.*et al. High electron mobility and quantum oscillations in non-encapsulated ultrathin semiconducting Bi2O2Se. Nature  Nanotechnology, 2017,12, 530.

8.  Chen, C. #; Wang, M. #Wu, J. #, Peng, H.*, Chen, Y. L.*,et al. Electronic Structures and unusually robust bandgap in an ultrahigh-mobility layered oxide semiconductor, Bi2O2SeScience Advances, 2018, 4, eaat8355 (Co-first author).

7. Yin, J. #; Tan Z. #; Hong H. #Wu, J. #, Liu, K.*, Peng, H.*et al. Ultrafast, highly-sensitive infrared photodetectors based on two-dimensional Bi2O2Se crystal. Nature Communications, 2018, 9, 3311 (Co-first author).

6.Wu, J.; Peng, H.*et al. Chemical patterning of high-mobility semiconducting 2D Bi2O2Se crystals for integrated optoelectronic devices. Advanced Materials, 2017291704060.

5. Wu, J.; Peng, H. *et al. Controlled synthesis of high-mobility atomically thin bismuth oxyselenide crystals. Nano Letters, 2017, 17, 3021.

4. Wu, J.; Peng, H.*, et al. Low residual carrier concentration and high mobility in 2D semiconducting Bi2O2Se,  Nano Letters, 2019, 19, 197.                                    

3. Fu, H#.; Wu, J.#et al. Self-modulation doping effect in the high-mobility layered semiconductor Bi2O2Se. Physical  Review B2018, 97, 241203 (Co-first author).

2.  Wu, J.; Liu, Z.*; Peng, H.*, Fluorescence quenching effect of rhodanmine 6G on two-dimensional Bi2Se3 crystals. Acta Chimica Sinica, 2015, 73, 944.

1. Wu, J.; Li, N.*et al. Fluorine-free crystallization of triclinic AlPO4-34. Crysengcomm2012,14, 8671.   







Baidu
map