头像

刘文玮 副教授

招生专业: 光学,光子学与光子技术

电话:

邮箱: wliu@nankai.edu.cn

办公地点: 伯苓楼B305

个人资料

  • 性别:
  • 部门: 物理学院
  • 联系电话:
  • 通讯地址:
  • 职称: 副教授
  • 电子邮箱: wliu@nankai.edu.cn
  • 办公地址: 伯苓楼B305

教育经历

工作经历

个人简介

刘文玮,男,南开大学物理科学学院副教授,博士生导师。入选人社部和全国博管会“博新计划”、南开大学“百名青年学科带头人”。研究方向为人工微纳结构光物理及其信息光子学应用,包括超构材料光谐振耦合机理、超构成像技术、多功能和多维度光场调控、深度学习技术及其光应用。研究成果以第一/通讯作者身份在Physical Review Letters、Light: Science & Applications、Optica、Advanced Materials、Nano Letters等国际知名期刊发表论文20余篇,合作论文50余篇;授权中国发明专利2项、美国发明专利2项。受邀在国际国内学术会议上做邀请报告20余次,担任Nat. Commun.、Light: Sci. Appl.、ACS Appl. Nano Mater.等期刊审稿人。相关成果入选2021年“博新计划”全国十大成果、2020年中国光学学会郭光灿光学优秀博士论文提名、第15届中国光学学会王大珩光学奖学生奖、天津市优秀博士学位论文等奖励。

研究方向

1. 人工微结构光场调控


人工微结构是一种人工设计的微纳材料,其结构尺寸小于入射光场的波长,通常被学术界称为超构材料(对于平面型超构材料又称为超构表面)。与传统体材料不同,人工微结构材料的物理性质并不主要取决于其组成分子或者原子,而是决定于所设计的“人造原子”及其排列方式。利用人工微结构可以实现自然材料难以实现的新奇物理效应——如负折射、光学隐身、异常折射、光子霍尔效应等。迄今发展出的人工微纳结构材料多与光、声、电、磁、热等性质相联系,为人类新材料、新技术的突破提供了一个新契机。


我们主要研究利用人工微结构在亚波长尺度对波场的偏振、振幅、相位、频率等性质进行高度定制化的调控,为发现新效应和新现象、开发新器件和开拓新应用提供了重要途径。典型研究成果包括全傅里叶分量调控的多路涡旋光生成[Adv. Mater. 31, 1901729 (2019)]、[Laser Photonics Rev. 15, 2100207 (2021)];人工微结构光场空间相干性调控[Nano Lett. 22, 6342 (2022)]、多维度光场调控原理和相关技术[Optica 9, 217 (2022)]、[Adv. Mater. 35, 2208884 (2023)]、[Nano Lett. 19, 4221 (2019)]、[ACS Photonics 10, 2031 (2023)]等。


2. 微结构信息光子学


由于光子是玻色子,通过光场实现信息的传输具有高并行度、高容量、高维度等特点。近年来,借助于人工微结构多维度光场联合调控的优势,超表面和光信息的结合正在革新新一代光通信技术。在基础光物理方面,如何提高光信息密度、发展微纳尺度有源光信息器件、实现微纳光信息抗干扰传输为传统光信息理论提出了新的挑战。在光应用方面,实现光信息加载、传输和探测等功能的集成,发展高密度光信息存储、高速光通信、光学计算、光学高精密传感、增强现实和虚拟现实等技术也对人工微结构光场调控提出了新的要求。此外,信息人工微结构在激光雷达、光学隐身中也有重要应用。相关研究的开展,对于光子学、信息学、成像技术、高灵敏生物检测技术等多学科多技术的研究和交叉具有重要意义。典型研究成果包括基于全k空间BICs的信息光激射[Phys. Rev. Lett. 132, 183801 (2024)];统计超构表面实现信息光场超鲁棒传输[Light: Sci. Appl. 13, 131 (2024)]。


3. 微结构成像光子学


借助于人工微结构对光场多维度的调控能力,可以大大提升现有的成像技术,在广角响应、消色像差、成像系统、超分辨成像等领域具有广阔的应用前景。我们的典型研究工作包括提出了高效率非傍轴傅里叶变换透镜[Adv. Mater. 30, 1706368 (2018)]、提出了基于透镜阵列的消像差和高精度三维定位技术[Optica 7, 1706 (2020)]、消球差色差超构透镜[Laser Photonics Rev. 18, 2300729 (2024)]等。相关工作获授权美国发明专利2项、中国发明专利2项。

研究成果

主持项目:

1. 2023-2026 国家自然科学基金(面上)项目,12274239,人工微结构非厄密连续谱束缚态及其偏振极化波前调控,55万

2. 2018-2020 人社部“博新计划”,BX20180148,人工微结构光场调控物理及超分辨成像研究,60万

3. 2022-2025 天津市自然科学基金(面上)项目,

22JCYBJC00800,基于超表面光场联合调控物理的成像技术研究,10万

4. 2020-2022 国家自然科学基金(青年)项目,11904183,各向异性超表面光场联合调控超分辨成像研究,27万

5. 2021-2023 博士后面上(一等)项目,2021M690084,基于人工微结构光场联合调控的高性能成像系统研究,12万

6. 2018-2020 博士后面上(一等)项目,2018M640229,基于人工微结构的光场调控物理及光场计算,8万


项目骨干:

2021-2026 国家重点研发计划

2022-2026 国家自然科学基金重大项目

2023-2026 国家自然科学基金联合基金项目重点支持项目



(完整论著列表详见https://webofscience.clarivate.cn/wos/author/record/1985784)

代表性论文:


2024年

(1) Ruoheng Chai, Wenwei Liu*, Zhancheng Li, Yuebian Zhang, Haonan Wang, Hua Cheng*, Jianguo Tian, and Shuqi Chen*, “Spatial Information Lasing Enabled by Full-k-space Bound States in the Continuum,” Phys. Rev. Lett. 132, 183801 (2024).[PDF]

(2) Leixin Liu, Wenwei Liu*, Fei Wang, Xiaofeng Peng, Duk-Yong Choi, Hua Cheng, Yangjian Cai*, and Shuqi Chen*, “Ultra-robust informational metasurfaces based on spatial coherence structures engineering,” Light: Sci. Appl. 13, 131 (2024).[PDF]

(3) Junhao Li(#), Wenwei Liu(#), Haofei Xu(#), Zhaorui Huang, Jing Wen, Jia Yang, Jianguo Guan, Shuming Wang, Andrea Alù, Zhang-Kai Zhou*, Shuqi Chen*, and Lin Chen*, “An RGB-achromatic aplanatic metalens,” Laser Photonics Rev. 18, 2300729 (2024).[PDF]

(4) Yijia Zang, Ruoheng Chai, Wenwei Liu*, Zhancheng Li, Hua Cheng*, Jianguo Tian, and Shuqi Chen*, “Enhanced wide-angle third-harmonic generation in flat-band-engineered quasi-BIC metagratings,” Sci. China Phys. Mech. 67, 244212 (2024).[PDF]

(5)Yongliang Liu, Wenwei Liu*, Qi Liu, Yifei Xu, Bo Yu, Zhancheng Li, Hua Cheng*, and Shuqi Chen*, “Dual-polarized transmissive metasurfaces for near-unitary-NA analog spatial computing empowered by impedance matching and mismatching,” Opt. Lett. 49, 4926 (2024).[PDF]

(6) Lieyu Chen, Wenwei Liu*, Zhancheng Li, Yuebian Zhang, Hua Cheng*, Jianguo Tian, and Shuqi Chen*, “Polarization-insensitive high-numerical-aperture metalens for wide-field super-resolution imaging,” Opt. Lett. 49, 1640 (2024).[PDF]


2023年

(1) Wenwei Liu(#), Zhancheng Li(#), Muhammad Afnan Ansari(#), Hua Cheng*, Jianguo Tian, Xianzhong Chen*, Shuqi Chen*, “Design strategies and applications of dimensional optical field manipulation based on metasurfaces,” Adv. Mater. 35, 2208884 (2023)[PDF]

(2) Ruoheng Chai, Qi Liu, Wenwei Liu*, Zhancheng Li, Hua Cheng*, Jianguo Tian, and Shuqi Chen*, “Emerging planar nanostructures involving both local and nonlocal modes,” ACS Photonics 10, 2031 (2023)[PDF]

(3) Yifan Jiang, Wenwei Liu*, Zhancheng Li, Duk-Yong Choi, Yuebian Zhang, Hua Cheng*, Jianguo Tian, and Shuqi Chen*, “Linear and Nonlinear Optical Field Manipulations with Multifunctional Chiral Coding Metasurfaces,” Adv. Opt. Mater. 11, 2202186 (2023).[PDF]


2022年

(1) Leixin Liu, Wenwei Liu*, Fei Wang, Hua Cheng*, Duk-Yong Choi, Jianguo Tian, Yangjian Cai*, Shuqi Chen*, “Spatial coherence manipulation on the statistical photonic platform,” Nano Lett. 22, 6342 (2022)[PDF]

(2) Bo Yang(#), Dina Ma(#), Wenwei Liu(#), Duk-Yong Choi, Zhancheng Li, Hua Cheng, Jianguo Tian, and Shuqi Chen*, “Deep learning-based colorimetric polarization-angle detection with metasurfaces,” Optica 9, 217 (2022).[PDF]


2021年

(1) Zelin Hao(#), Wenwei Liu(#), Zhancheng Li(#), Zhi Li, Guangzhou Geng, Yanchun Wang, Hua Cheng*, Hammad Ahmed, Xianzhong Chen, Junjie Li, Jianguo Tian*, and Shuqi Chen*, “Full complex-amplitude modulation of second harmonic generation with nonlinear metasurfaces,” Laser Photonics Rev. 15, 2100207 (2021).[PDF]

(2) Ruoheng Chai, Wenwei Liu*, Zhancheng Li, Hua Cheng*, Jianguo Tian, and Shuqi Chen*, “Multiband quasi-bound states in the continuum engineered by space-group-invariant metasurfaces,” Phys. Rev. B 104, 075149 (2021).[PDF]

(3) Bo Yang, Wenwei Liu, Duk-Yong Choi, Zhancheng Li, Hua Cheng*, Jianguo Tian*, and Shuqi Chen*, “High-performance transmission structural colors generated by hybrid metal-dielectric metasurfaces,” Adv. Opt. Mater. 9, 2100895 (2021).[PDF]


2020年

(1)Wenwei Liu(#), Dina Ma(#), Zhancheng Li, Hua Cheng, Duk-Yong Choi, Jianguo Tian, and Shuqi Chen*, “Aberration-corrected three-dimensional positioning with single-shot metalens array,” Optica 7, 1706 (2020).[PDF]

(2) Shuqi Chen*, Wenwei Liu, Zhancheng Li, Hua Cheng, and Jianguo Tian, “Metasurfaces empowered optical multiplexing and multifunction,” Adv. Mater. 32, 1805912 (2020).[PDF]

(3) Zhi Li, Wenwei Liu, Guangzhou Geng, Zhancheng Li, Junjie Li, Hua Cheng*, Shuqi Chen*, and Jianguo Tian, “Multiplexed Nondiffracting Nonlinear Metasurfaces ,” Adv. Funct. Mater. 30, 1910744 (2020).[PDF]

(4) Wenwei Liu, Zhancheng Li, Hua Cheng*, Shuqi Chen*, “Dielectric resonance-based optical metasurfaces: from fundamentals to applications,” iScience 23, 101868 (2020).[PDF]

(5) Wenwei Liu, Hua Cheng*, Shuqi Chen*, and Jianguo Tian, “Diffractive metalens: from fundamentals, practical applications to current trends,” Adv. Phys.: X 5, 1742584 (2020).[PDF]


2019年

(1) Wenwei Liu, Zhancheng Li, Zhi Li, Hua Cheng, Chengchun Tang, Junjie Li, Shuqi Chen*, and Jianguo Tian, “Energy tailorable spin-selective multifunctional metasurfaces with full Fourier components,” Adv. Mater. 31, 1901729 (2019).[PDF]

(2) Bo Yang, Wenwei Liu, Zhancheng Li, Hua Cheng, Duk-Yong Choi*, Shuqi Chen*, and Jianguo Tian, “Ultra-highly saturated structural colors enhanced by multipolar-modulated metasurfaces,” Nano Lett. 19, 4221 (2019)[PDF]


2018年及以前

(1) Wenwei Liu, Zhancheng Li, Hua Cheng, Chengchun Tang, Junjie Li, Shuang Zhang*, Shuqi Chen*, and Jianguo Tian, “Metasurface enabled wide-angle Fourier lens,” Adv. Mater. 30, 1706368 (2018).[PDF]

(2) Ruizhi Zuo(#), Wenwei Liu(#), Hua Cheng*, Shuqi Chen*, and Jianguo Tian, “Breaking the diffraction limit with radially polarized light based on dielectric metalenses,” Adv. Opt. Mater. 6, 1800795 (2018).[PDF]

(3) Wenwei Liu, Zhancheng Li, Hua Cheng, Shuqi Chen*, and Jianguo Tian, “Momentum analysis for metasurfaces,” Phys. Rev. Appl. 8, 014012 (2017).[PDF]

(4) Wenwei Liu, Shuqi Chen*, Zhancheng Li, Hua Cheng, Ping Yu, Jianxiong Li, and Jianguo Tian, “Realization of broadband cross-polarization conversion in transmission mode in the terahertz region using a single-layer metasurface,” Opt. Lett. 40, 3185 (2015).[PDF]



社会兼职

教学经历

荣誉称号

2021年 “博新计划”全国十大创新成果

2020年 中国光学学会全国光学优秀博士学位论文提名优秀

2019年 第十五届王大珩光学高校学生奖

2019年 天津市优秀博士学位论文

13 访问

Baidu
map