ࡱ> @B=>?%` RRIbjbjNN2N,,y(zzzz|{t(ɶ}lhhhhh@Ă$h#n>Eާhhާާ>hhާjhhާh} `yozHL 0ɶ^|\TPFlTTT>>ڨTTTɶާާާާ(((d;?d;(((?((( Yale UniversityvNN0 z0YePgSSfNOo` N06'Yf[vNNOo`  HYPERLINK "http://www.yale.edu/physics/research/astrophysics.shtml" Astrophysics  HYPERLINK "http://www.yale.edu/physics/research/atomic.shtml" Atomic Physics  HYPERLINK "http://www.yale.edu/physics/research/beam.shtml" Beam Physics  HYPERLINK "http://www.yale.edu/physics/research/biophysics.shtml" Biophysics  HYPERLINK "http://www.yale.edu/physics/research/exptlcondmat.shtml" Experimental Condensed Matter Physics  HYPERLINK "http://www.yale.edu/physics/research/exptlnuclear.shtml" Experimental Nuclear Physics  HYPERLINK "http://www.yale.edu/physics/research/exptlparticle.shtml" Experimental Particle Physics  HYPERLINK "http://www.yale.edu/physics/research/gravitationphys.shtml" Gravitational Physics  HYPERLINK "http://www.yale.edu/physics/research/theoryparticles.shtml" High Energy Theory and Cosmology  HYPERLINK "http://www.yale.edu/physics/research/historyofphysics.shtml" History of Physics  HYPERLINK "http://www.yale.edu/physics/research/quantumcomputing.shtml" Center for Quantum Information Physics (CQuIP)   HYPERLINK "http://www.yale.edu/physics/research/quantumelec.shtml" Quantum Electronics  HYPERLINK "http://www.yale.edu/physics/research/theorycondmat.shtml" Theoretical Condensed Matter Physics  HYPERLINK "http://www.yale.edu/physics/research/theorynuclear.shtml" Theoretical Nuclear Physics N06'Yf[v zOo` Undergraduate PHYS060b, Energy Technology and Society. TTh 2.30-3.45 BCT 408A Paul FleurySc QR(27) Permission of instructor required The technology and use of energy. Impacts on the environment, climate, security, and economy. Application of scientific reasoning and quantitative analysis. Intended for non-science majors with strong backgrounds in math and science. Enrollment limited to freshmen. Preregistration required; see under Freshman Seminar Program.PHYS095a, Radiation and the Universe. TTh 2.30-3.45 TM370 215 Peter ParkerSc(0) Permission of instructor required An exploration of nuclear physics in the cosmos and on Earth, without intense mathematics. Nuclei as the heart of matter and the cores of stars; nuclear reactions as they power the stars and are responsible for the existence of every element; the role of radioactivity in our lives, including nuclear medicine, X rays, nuclear power, nuclear weapons, and terrorism. Enrollment limited to freshmen. Preregistration required; see under Freshman Seminar Program.PHYS110b, Developments in Modern Physics. MW 1.00-2.15 SPL 59 Bonnie FlemingSc QR(36) An introduction to modern physics and quantitative reasoning. Topics include subatomic particles, electromagnetic waves, black holes, galaxies, and the fate of the universe. Study of the stages of descriptive modeling, with examples ranging from Newtonian physics to Einstein's theory of relativity. See comparison of introductory sequences and laboratories in the YCPS.PHYS120a, Quantum Physics and Beyond. M 3.30-5.30 CO493 110 John HarrisSc(37) Permission of instructor required Current topics in modern physics, beginning with quantum physics and continuing through subatomic physics, special and general relativity, cosmology, astrophysics, and string theory. PHYS150a, General Physics. MWF 11.35-12.25 DAVIES AUD; 1 HTBA Oliver BakerSc QR(34) An introduction to classical physics and to selected topics in modern physics. Emphasis on fundamental principles, with examples of practical applications to medicine and other fields. Fall-term topics include mechanics, thermodynamics, and wave motion. Spring-term topics include electricity and magnetism, optics, and modern physics. See comparison of introductory sequences and laboratories in the YCPS.PHYS151b, General Physics. MWF 11.35-12.25 SPL 59; 1 HTBA Michael ZellerSc QR(34) An introduction to classical physics and to selected topics in modern physics. Emphasis on fundamental principles, with examples of practical applications to medicine and other fields. Fall-term topics include mechanics, thermodynamics, and wave motion. Spring-term topics include electricity and magnetism, optics, and modern physics. See comparison of introductory sequences and laboratories in the YCPS.PHYS165La, General Physics Laboratory. 3 HTBA SPL 39 David DeMilleSc(0) Meets during reading period A variety of individually self-contained experiments are roughly coordinated with the lectures in PHYS 150a, 151b, and 180a, 181b and illustrate and develop physical principles covered in those lectures.PHYS166Lb, General Physics Laboratory. 3 HTBA SPL 39 Oliver BakerSc(0) Meets during reading period A variety of individually self-contained experiments are roughly coordinated with the lectures in PHYS 150a, 151b, and 180a, 181b and illustrate and develop physical principles covered in those lectures.PHYS180a, Advanced General Physics. MW 11.35-12.50 SPL 59; 1 HTBA Stephen Irons, C. Megan UrrySc QR(34) A broad introduction to classical and modern physics for students who have some previous preparation in physics and mathematics. Fall-term topics include Newtonian mechanics, gravitation, waves, and thermodynamics. Spring-term topics include electromagnetism, optics, special relativity, and quantum physics. Concurrently with MATH 115a and 120b or equivalents. See comparison of introductory sequences and laboratories in the YCPS.May not be taken for credit after PHYS 150a, 151b.PHYS181b, Advanced General Physics. MW 11.35-12.50 DL 220; 1 HTBA Sohrab Ismail-BeigiSc QR(34) A broad introduction to classical and modern physics for students who have some previous preparation in physics and mathematics. Fall-term topics include Newtonian mechanics, gravitation, waves, and thermodynamics. Spring-term topics include electromagnetism, optics, special relativity, and quantum physics. Concurrently with MATH 115a and 120b or equivalents. See comparison of introductory sequences and laboratories in the YCPS.May not be taken for credit after PHYS 150a, 151b.PHYS200a, Fundamentals of Physics. MW 11.35-12.50 SPL 57; 1 HTBA Paul TiptonSc QR(34) A thorough introduction to the principles and methods of physics for students who have good preparation in physics and mathematics. Emphasis on problem solving and quantitative reasoning. Fall-term topics include Newtonian mechanics, special relativity, gravitation, thermodynamics, and waves. Spring-term topics include electromagnetism, geometrical and physical optics, and elements of quantum mechanics. Prerequisite: MATH 115a or b or equivalent. See comparison of introductory sequences and laboratories in the YCPS.PHYS201b, Fundamentals of Physics. MW 11.35-12.50 SPL 57; 1 HTBA Paul TiptonSc QR(34) A thorough introduction to the principles and methods of physics for students who have good preparation in physics and mathematics. Emphasis on problem solving and quantitative reasoning. Fall-term topics include Newtonian mechanics, special relativity, gravitation, thermodynamics, and waves. Spring-term topics include electromagnetism, geometrical and physical optics, and elements of quantum mechanics. Prerequisite: MATH 115a or b or equivalent. See comparison of introductory sequences and laboratories in the YCPS.PHYS205La, Modern Physical Measurement. 3 HTBA JWG 605 Volker WernerSc(0) Meets during reading period A two-term sequence of experiments in classical and modern physics for students who plan to major in Physics. In the first term, the basic principles of mechanics, electricity, and magnetism are illustrated in experiments designed to make use of computer data handling and teach error analysis. In the second term, students plan and carry out experiments illustrating aspects of wave and quantum phenomena and of atomic, solid state, and nuclear physics using modern instrumentation. May be begun in either term.PHYS205Lb, Modern Physical Measurement. 3 HTBA John HarrisSc(0) Meets during reading period A two-term sequence of experiments in classical and modern physics for students who plan to major in Physics. In the first term, the basic principles of mechanics, electricity, and magnetism are illustrated in experiments designed to make use of computer data handling and teach error analysis. In the second term, students plan and carry out experiments illustrating aspects of wave and quantum phenomena and of atomic, solid state, and nuclear physics using modern instrumentation. May be begun in either term.PHYS206La, Modern Physical Measurement. 3 HTBA Volker WernerSc(0) Meets during reading period A two-term sequence of experiments in classical and modern physics for students who plan to major in Physics. In the first term, the basic principles of mechanics, electricity, and magnetism are illustrated in experiments designed to make use of computer data handling and teach error analysis. In the second term, students plan and carry out experiments illustrating aspects of wave and quantum phenomena and of atomic, solid state, and nuclear physics using modern instrumentation. May be begun in either term.PHYS206Lb, Modern Physical Measurement. 3 HTBA John HarrisSc(0) Meets during reading period A two-term sequence of experiments in classical and modern physics for students who plan to major in Physics. In the first term, the basic principles of mechanics, electricity, and magnetism are illustrated in experiments designed to make use of computer data handling and teach error analysis. In the second term, students plan and carry out experiments illustrating aspects of wave and quantum phenomena and of atomic, solid state, and nuclear physics using modern instrumentation. May be begun in either term.PHYS260a, Intensive Introductory Physics. MW 11.35-12.50 SPL 63 Charles BaltaySc QR(34) Permission of instructor required The major branches of physics - classical and relativistic dynamics, gravitation, electromagnetism, heat and thermodynamics, statistical mechanics, quantum physics - at a sophisticated level. For students majoring in the physical sciences, Mathematics, and Philosophy who have excellent training in and a flair for mathematical methods and quantitative analysis. Concurrently with MATH 230, PHYS 301a, or equivalent.PHYS261b, Intensive Introductory Physics. MW 11.35-12.50 SPL 63 Charles BaltaySc QR(34) Permission of instructor required The major branches of physics - classical and relativistic dynamics, gravitation, electromagnetism, heat and thermodynamics, statistical mechanics, quantum physics - at a sophisticated level. For students majoring in the physical sciences, Mathematics, and Philosophy who have excellent training in and a flair for mathematical methods and quantitative analysis. Concurrently with MATH 230, PHYS 301a, or equivalent.PHYS295a, Research Methods in Astrophysics. MW 1.00-2.15 JWG 263 Charles BailynSc QR(0) Meets during reading period The acquisition and analysis of astrophysical data, including the design and use of ground- and space-based telescopes, computational manipulation of digitized images and spectra, and confrontation of data with theoretical models. Examples taken from current research at Yale and elsewhere.PHYS301a, Introduction to Mathematical Methods of Physics. TTh 11.35-12.50 SPL 56 Sean Barrett QR(24) Topics include multivariable calculus, linear algebra, complex variables, vector calculus, and differential equations. Designed to give accelerated access to 400-level courses by providing, in one term, the essential background in mathematical methods. Recommended to be taken concurrently with PHYS 401a or 410a. Prerequisite: PHYS 180a, 181b, or 200a, 201b, or 260a, 261b, or permission of instructor.PHYS342a, Introduction to Earth and Environmental Physics. TTh 2.30-3.45 SPL 56 Steve LamoreauxSc QR(27) An introduction to the basic physical processes that have shaped the Earth's environment over time. Topics include the accretion of the nascent Earth, the evolution of the inner core, and the fundamental atmospheric, oceanic, and cryospheric dynamics that determine the state of the climate. Prerequisite: PHYS 180a, 181b, or 200a, 201b, or 260a, 261b, or permission of instructor.PHYS344b, Quantum and Nanoscale Physics. TTh 11.35-12.50 SPL 56 David DeMilleSc QR(24) An introduction to cutting-edge developments in physics involving quantum information and/or nanotechnology. Background concepts in quantum mechanics, electromagnetism, and optics are introduced as necessary. Prerequisite: PHYS 180a, 181b, or 200a, 201b, or 260a, 261b, or permission of instructor. PHYS 301a or other advanced mathematics course recommended.PHYS382Lb, Experimental Research Studies II. MW 1.30-4.20 JWG 667 Richard Casten, Sidney Cahn, Simon MochrieSc(0) Laboratory experiments with some discussion of theory and techniques. An advanced course focusing on modern experimental methods and concepts in atomic and optical physics. Intended to prepare students for independent research. For majors in the physical sciences. Prerequisite: PHYS 206La or Lb. After or concurrently with PHYS 439a or 440b, or with permission of instructor. PHYS 381La is not a prerequisite.PHYS401a, Advanced Classical Physics: From Newton to Einstein I. MW 11.35-12.50 SPL 56 Ramamurti ShankarSc QR(34) The first term of a two-term sequence in advanced physics as the field developed from the time of Newton to the age of Einstein. Topics include mechanics, electricity and magnetism, statistical physics, and thermodynamics. The development of classical physics into a 'mature' scientific discipline, an idea that was subsequently shaken to the core by the revolutionary discoveries of quantum physics and relativity. Prerequisite: PHYS 180a, 181b, or 200a, 201b, or 260a, 261b. Concurrently with PHYS 301a or other advanced mathematics course.PHYS402b, Advanced Classical Physics: From Newton to Einstein II. MW 11.35-12.50 SPL 56 Ramamurti ShankarSc QR(34) Continuation of PHYS 401a. Prerequisite: PHYS 401a.PHYS410a, Classical Mechanics. MW 11.35-12.50 BCT 408A A. Douglas StoneSc QR(34) An advanced treatment of mechanics, with a focus on the methods of Lagrange and Hamilton. Lectures and problems address the mechanics of particles, systems of particles, and rigid bodies, as well as free and forced oscillations. Introduction to chaos and special relativity. Prerequisite: PHYS 180a, 181b, or 200a, 201b, or 260a, 261b. Concurrently with PHYS 301a or other advanced mathematics course.PHYS420a, Statistical Thermodynamics. MWF 10.30-11.20 SPL 48 Simon MochrieSc QR(33) An introduction to the laws of thermodynamics and their theoretical explanation by statistical mechanics. Applications to gases, solids, phase equilibrium, chemical equilibrium, and boson and fermion systems. Prerequisites: PHYS 301a and 410a or equivalents.PHYS430b, Electromagnetic Fields and Optics. MWF 11.35-12.25 SPL 51 Andreas HeinzSc QR(34) Electrostatics, magnetic fields of steady currents, electromagnetic waves, and relativistic dynamics. Provides a working knowledge of electrodynamics. Prerequisites: PHYS 301a and 410a or equivalents.PHYS439a, Basic Quantum Mechanics. TTh 2.30-3.45 BCT 408A Sohrab Ismail-BeigiSc QR(27) The basic concepts and techniques of quantum mechanics essential for solid-state physics and quantum electronics. Topics include the Schrdinger treatment of the harmonic oscillator, atoms and molecules and tunneling, matrix methods, and perturbation theory. Prerequisites: PHYS 181b or 201b, PHYS 301a, or equivalents, or permission of instructor.PHYS440b, Quantum Mechanics and Natural Phenomena I. MWF 10.30-11.20 SPL 56 Karine Le HurSc QR(33) The first term of a two-term sequence covering principles of quantum mechanics with examples of applications to atomic physics. The solution of bound-state eigenvalue problems, free scattering states, barrier penetration, the hydrogen-atom problem, perturbation theory, transition amplitudes, scattering, and approximation techniques. Prerequisites: PHYS 410a or 401a, 402b.PHYS441a, Quantum Mechanics and Natural Phenomena II. MWF 11.35-12.25 SPL 51 Karine Le HurSc QR(34) Continuation of PHYS 440b. Prerequisite: PHYS 440b.PHYS448a, Solid-State Physics I. TTh 1.00-2.15 ML 107 Victor HenrichSc QR(26) The first term of a two-term sequence covering the principles underlying the electrical, thermal, magnetic, and optical properties of solids, including crystal structure, phonons, energy bands, semiconductors, Fermi surfaces, magnetic resonances, phase transitions, dielectrics, magnetic materials, and superconductors. Prerequisites: APHY 322b, 439a.PHYS449b, Solid-State Physics II. TTh 1.00-2.15 BCT 408A Charles AhnSc QR(26) The second term of the sequence described under APHY 448a.PHYS460a, Mathematical Methods of Physics. MW 9.00-10.15 SPL 56 Nicholas Read QR(32) Survey of mathematical techniques useful in physics. Physical examples illustrate vector and tensor analysis, group theory, complex analysis (residue calculus, method of steepest descent), differential equations and Green?s functions, and selected advanced topics. Prerequisite: PHYS 301a or other advanced mathematics course.PHYS465b, General Relativity: Theory and Experiment. TTh 11.35-12.50 SPL 52 Jack SandweissSc QR(24) Basic theory of general relativity and the modern experiments that verify the theory. Experiments include lunar ranging, relativistic time delay (Cassini mission), deflection of light, and gravitational waves. Prerequisite: PHYS 410a or equivalent.PHYS471a, Independent Projects in Physics. 1 HTBA Sean Barrett(0) Permission of instructor required Meets during reading period Each student works on an independent project under the supervision of a member of the faculty or research staff. Students participate in a series of seminar meetings in which they present a talk on their project or research related to it. A written report is also submitted. For students with a strong background in Physics course work.PHYS472b, Independent Projects in Physics. 1 HTBA Daniel McKinsey(0) Permission of instructor required Meets during reading period Each student works on an independent project under the supervision of a member of the faculty or research staff. Students participate in a series of seminar meetings in which they present a talk on their project or research related to it. A written report is also submitted. For students with a strong background in Physics course work.Graduate Physics 500a, Classical Mechanics. Newtonian dynamics and kinematics, Lagrangian dynamics, small oscillations, Hamiltonian dynamics and transformation theory, completely integrable systems, regular and chaotic motion of Hamiltonian systems, mechanics of continuous systems: strings and fluids. Physics 502b, Electromagnetic Theory I. Classical electromagnetic theory including boundary value problems and applications of Maxwell equations. Macroscopic description of electric and magnetic materials. Wave propagation. Physics 504Lb, Modern Physics Measurements. A laboratory course with experiments in atomic, condensed matter, nuclear, and elementary particle physics. Data analysis provides an introduction to computer programming and to the elements of statistics and probability. Physics 506au, Mathematical Methods of Physics. Survey of mathematical techniques useful in physics. Includes vector and tensor analysis, group theory, complex analysis (residue calculus, method of steepest descent), differential and integral equations (regular singular points, Green's functions), and advanced topics (Grassmann variables, path integrals, supersymmetry. Physics 508a, Quantum Mechanics I. The principles of quantum mechanics with application to simple systems. Canonical formalism, solutions of Schrodinger's equation, angular momentum and spin. Physics 512b, Statistical Physics I Review of thermodynamics, the fundamental principles of classical and quantum statistical mechanics, canonical and grand canonical ensembles, identical particles, Bose and Fermi statistics, phase-transitions and critical phenomena, renormalization group, irreversible processes, fluctuations. Physics 515a, Topics in Modern Physics Research. A seminar course intended to provide an introduction to current research in physics and an overview of physics research opportunities at Yale.  INCLUDEPICTURE "http://www.yale.edu/resources/pixel.gif" \* MERGEFORMATINET  INCLUDEPICTURE "http://www.yale.edu/resources/pixel.gif" \* MERGEFORMATINET  Physics 522a, Introduction to Atomic Physics. This course is intended to develop basic theoretical tools needed to understand fundamental atomic processes. Emphasis given to applications in laser spectroscopy. Experimental techniques discussed when appropriate. Physics 523a, Biological Physics. An introduction to the physics of biological systems, including molecular motors, protein folding, membrane self-assembly, ion pumping, and bacterial locomotion. Background concepts in probability and statistical mechanics are introduced as necessary, as well as key constituents of living cells. Physics 524a, Introduction to Nuclear Physics. Introduction to a wide variety of topics in nuclear structure, nuclear reactions, and nuclear physics at extremes of angular momentum, isospin, energy, and energy density. Physics 525a, Quantum Physics at Femto- and Nano-scales Classical and quantum field theories, symmetries and their breakdown, dynamics of collective excitations, renormalization group, weak coupling methods, quasi-classical approximation, topological effects, phase transitions and critical phenomena. A wide range of examples and applications will be presented, including Quantum Chromo-Dynamics, quark-gluon plasma, nuclear structure, nano-scale systems (especially graphene and carbon nano-tubes), physics of black holes and the Early Universe. Physics 526b, Introduction to Elementary Particle Physics. An overview of particle physics including a historical introduction to the standard model, experimental techniques, symmetries, conservation laws, the quark-parton model, and a semiformal treatment of the standard model. Physics 538a, Introduction to Relativistic Astrophysics and General Relativity. Basic concepts of differential geometry (manifolds, metrics, connections, geodesics, curvature); Einstein's equations and their application to cosmology, gravitational waves, black holes, etc.  INCLUDEPICTURE "http://www.yale.edu/resources/pixel.gif" \* MERGEFORMATINET   INCLUDEPICTURE "http://www.yale.edu/resources/pixel.gif" \* MERGEFORMATINET Physics 548au and 549bu, Solid State Physics I and II. A two-term sequence covering the principles underlying the electrical, thermal, magnetic, and optical properties of solids, including crystal structures, phonon, energy bands, semiconductors, Fermi surfaces, magnetic resonance, phase transitions, and superconductivity. Also E&AS 850au,851bu. Physics 602a, Classical Field Theory. Covariant formulation of electrodynamics as an example of a classical relativistic field theory. Lagrangian formalism, symmetries and conservation laws, nonlinear phenomena. Introduction to general relativity and other classical field theories. Physics 608b, Quantum Mechanics II. Approximation methods, scattering theory and the role of symmetries. Relativistic wave equations. Second quantized treatment of identical particles. Elementary introduction to quantized fields.  INCLUDEPICTURE "http://www.yale.edu/resources/pixel.gif" \* MERGEFORMATINET Physics 609a, Relativistic Field Theory I The fundamental principles of quantum field theory. Interacting theories and the Feynman graph expansion. Quantum electrodynamics including lowest order processes, one loop corrections, and the elements of renormalization theory. Physics 610a, Quantum Many-Body Theory I. Second quantization, quantum statistical mechanics, Hartree-Fock approximation, linear response theory, random phase approximation, perturbation theory and Feynman diagrams, Landau theory of Fermi liquids, BCS theory, Hartree-Fock-Bogoliubov method. Applications to solids and finite-size systems such as quantum dots, nuclei, and nanoparticles. Physics 624bu, Group Theory. Lie algebras, Lie groups and some of their applications. Representation theory. Explicit construction of finite-dimensional irreducible representations. Invariant operators and their eigenvalues. Tensor operators and enveloping algebras. Boson and fermion realizations. Differential realizations. Quantum dynamical applications. Physics 628b, Statistical Physics II. An introduction to topics in many-body physics, namely, Ising models, transfer matrix, critical phenomena, renormalization group in critical phenomena and field theory, sigma models, and bosonization. Physics 630b, Relativistic Field Theory II. An introduction to nonabelian gauge field theories, spontaneous symmetry breakdown and unified theories of weak and electromagnetic interactions. Renormalization group methods, quantum chromodynamics, and nonperturbative approaches to quantum field theory. Physics 631au, Computational Physics I. A laboratory course on modern numeric computational techniques with applications to science problems of current interest. Topics include data analysis, numerical integration, solutions to differential equations, and Monte Carlo techniques. Previous experience with a computer programming language is desirable. Some applications will use Mathematica. Physics 632b, Quantum Many-Body Theory II A second course in quantum many-body theory, covering the core physics of electron systems, with emphasis on the electron-electron interaction, on the role of dimensionality, on the coupling either to magnetic impurities leading to the well-known Kondo effect or to the electromagnetic noise. Applications to mesoscopic systems and cold atomic gases are also developed. Physics 634a, Mesoscopic Physics Introduction to the physics of nanoscale solid state systems that are large and disordered enough to be described in terms of simple macroscopic parameters like resistance, capacitance, and inductance, but small and cold enough that effects usually associated with microscopic particles, like quantum-mechanical coherence and/or charge quantization, dominate. Emphasis is placed on transport and noise phenomena in the normal and superconducting regimes. Physics 650a and 651b, Theory of Solids I and II. Theoretical techniques for the studyof the structural and electronic properties of solids, with applications. Topics include band structure, phonons, defects, transport, magnetism, and superconductivity.  Special Topics Courses Physics 661b, The Art of Data Analysis. The course is an introduction to mathematical and statistical techniques used to analyse data. The course is fairly practice-oriented, and is aimed at students who have, or anticipate having, research data to analyze in a thorough and unbiased way. It will cover subjects in statistics, computing/numerical techniques, data analysis, but also topics related to data reconstruction and pattern recognition which are closely linked to the understanding of the data derived from those methods. The intention is to prepare students for a better approach to their own analysis. Many of the topics covered are related to typical problems in experimental high energy and nuclear physics but are fairly general in nature. If you are interested please contact:  HYPERLINK "mailto:thomas.ullrich@bnl.gov" thomas.ullrich@bnl.gov. Physics 662b, Special Topics in Particle Physics: Beyond the Standard Model. By arrangement with faculty. Modern concepts in particle physics, including electroweak symmetry breaking, mass generation, conformal symmetry, strongly coupled quantum field theories, supersymmetry, and extra dimensions. Material covered includes the theoretical basis of these ideas, experimental tests and constraints, and implications for cosmology. Physics 663b, Special Topics in Cosmology and Particle Physics. By arrangement with faculty. Physics 664a, Special Topics in Nuclear Electromagnetic Interactions. By arrangement with faculty. Physics 664b, Special Topics in Nuclear Physics. Emphasis is on nuclear structure. The approach stresses physical ideas, leading to an understanding of a number of advanced nuclear models and to practical case studies with them. Physics 665a, Special Topics in Atomic Physics. By arrangement with faculty. Physics 666b, Special Topics in Classical Field Theory. By arrangement with faculty. Physics 667a/G&G 767a, Special Topics in Condensed Matter Physics. Seminar in Ice Physics and Geophysics/John Wettlaufer This seminar brings together the basic thermodynamics and statistical mechanics of crystal growth, surface phase transitions, metastability and instability to explore the many faces of the surface of ice. The motivating factor is the incommensurability between the length of the history of observations of the shapes of snow crystals (which begins in ancient China, continues with Kepler's little known studies of 1611, and carries on from Descartes to the present day) and our continued ignorance concerning the physical processes that are responsible for those shapes. Those processes are unique insofar as we understand that microphysics is clearly controlling macroscopic shapes. The outstanding question is how? The prize of understanding these processes extends beyond the enigma of the snowflake, having implications in, inter alia, the atmosphere ranging from radiative transfer to the heterogenous chemistry in the polar stratosphere, to materials processing and applied mathematics. The seminar will be driven by the literature, which spans periodicals in many branches of physical science and engineering, and will be a journal club environment. Physics 667b, Special Topics in Condensed Matter Physics. An introduction to nonequilibrium statistical mechanics in classical and quantum systems. Brief survey of equilibrium physics and processes, Green-Kubo theory, and approaches ranging from those of Kawasaki to Zubarev. The relation of dynamical systems and chaos to statistical mechanics and transport. Discussion of open problems and applications. Physics 668b, Special Topics in Geometry and Modern Field Theory. By arrangement with faculty. Explores the relation between modern geometry and (supersymmetric) gauge theories. Topics include a survey of fiber bundles, connections, holonomy, characteristic classes, Dirac operators, and the supersymmetric proofs of the index theorems. Physics 671b, Special Topics in Experimental Nuclear and Particle Physics. Propagation of particles and photons in matter, modern detection techniques, types of detectors, large detector systems, accelerators, and seminal experiments are studied. The subject spans the range of energies from low energy nuclear physics up through high energy physics. Physics 672a or b, Special Topics in Experimental Physics. By arrangement with faculty. Physics 673b, Special Topics in Atomic Physics. By arrangement with faculty. Physics 674b, Quantum Information, Quantum Cryptography, and Quantum Computation. The basic principles of quantum information, cryptography, and computation will be covered. Following the theoretical introduction, methods of realizing real world devices will be discussed. These will encompass methods based on both atomic/molecular systems and solid state systems. Lecture section of the course as described will take approximately half the class time; the remaining time will be devoted to student presentations of selected papers. 680au, The Experiments of General Relativity. The basic physical ideas and mathematical formulation of general relativity are reviewed, although many results that apply to particular experiments are given without proof. The modern experiments that make precision tests of the theory are explained. These include lunar laser ranging, radar timing from planet Venus reflections, and gravitational radiation from a binary pulsar. A discussion of the LIGO experiment (earth-based gravity wave detector) and LISA (space-based gravity wave detector) is conducted. The course is open to upper-level undergraduates as well as graduate students.  >VX        b c m n o p # $ @ A B C qqqqqq$hdh#\B*CJOJQJo(ph(hdh#\0JB*CJOJQJ\ph!hdh#\B*CJOJQJph*jhdh#\B*CJOJQJUph/hdh#\B*CJKH$OJQJ\^Jo(ph$hI_h#\5B*CJOJQJph'hI_h#\5B*CJOJQJo(ph,>V  o B v Q 426$dh$1$Ifa$gd#\$dh-D1$@&M a$gd#\dhgd#\lRI  S T t u v w  O P Q R 0246ꙁ/hI_h#\5B*CJKH$OJQJ\^Jph/hdh#\B*CJKH$OJQJ\^Jo(ph(hdh#\0JB*CJOJQJ\ph!hdh#\B*CJOJQJph$hdh#\B*CJOJQJo(ph*jhdh#\B*CJOJQJUph-268@BJN fghjkoptvX  GѾѦѦѾѾѾюѾѾѦѦѾѾѾюѾѾѦѦѾѾѾюѾѾ/hI_h#\6B*CJKHOJQJ]^Jph/hI_h#\5B*CJKHOJQJ\^Jph%hI_h#\B*CJKHOJQJph)hI_h#\B*CJKHOJQJ^Jph2hI_h#\5B*CJKH$OJQJ\^Jo(ph868veT$dh$1$Ifa$gd#\$dh$1$Ifa$gd#\;kda$$IfK 634Kayt#\$dh$1$Ifa$gd#\;kd$$IfK 634Kayt#\gc;kd3$$IfK 634Kayt#\$dh$1$Ifa$gd#\Nkd$$IfK0   634Kayt#\ghjkv:;kdV$$IfK 634Kayt#\;kd$$IfK 634Kayt#\$dh$1$Ifa$gd#\;kd$$IfK 634Kayt#\R;kd($$IfK 634Kayt#\Nkd$$IfK0   634Kayt#\$dh$1$Ifa$gd#\$dh$1$Ifa$gd#\v:;kdK$$IfK 634Kayt#\;kd$$IfK 634Kayt#\$dh$1$Ifa$gd#\;kd$$IfK 634Kayt#\  R;kd$$IfK 634Kayt#\Nkd$$IfK0   634Kayt#\$dh$1$Ifa$gd#\$dh$1$Ifa$gd#\v:;kd@$$IfK 634Kayt#\;kd$$IfK 634Kayt#\$dh$1$Ifa$gd#\;kd~$$IfK 634Kayt#\)*z!"r-. ҿҿҿҿҿҿҿҿҧҿҿҿҿҿҧҿҿҿҿҿҿҿ/hI_h#\6B*CJKHOJQJ]^Jph%hI_h#\B*CJKHOJQJph)hI_h#\B*CJKHOJQJ^Jph/hI_h#\5B*CJKHOJQJ\^JphBR;kd$$IfK 634Kayt#\Nkd$$IfK0   634Kayt#\$dh$1$Ifa$gd#\$dh$1$Ifa$gd#\v:;kd5$$IfK 634Kayt#\;kd$$IfK 634Kayt#\$dh$1$Ifa$gd#\;kds$$IfK 634Kayt#\ )*R;kd $$IfK 634Kayt#\Nkd$$IfK0   634Kayt#\$dh$1$Ifa$gd#\$dh$1$Ifa$gd#\v:;kd* $$IfK 634Kayt#\;kd $$IfK 634Kayt#\$dh$1$Ifa$gd#\;kdh $$IfK 634Kayt#\!"R;kd $$IfK 634Kayt#\Nkd $$IfK0   634Kayt#\$dh$1$Ifa$gd#\$dh$1$Ifa$gd#\v:;kd $$IfK 634Kayt#\;kd $$IfK 634Kayt#\$dh$1$Ifa$gd#\;kd] $$IfK 634Kayt#\-.R;kd $$IfK 634Kayt#\Nkd $$IfK0   634Kayt#\$dh$1$Ifa$gd#\$dh$1$Ifa$gd#\'(v:;kd$$IfK 634Kayt#\;kd $$IfK 634Kayt#\$dh$1$Ifa$gd#\;kdR $$IfK 634Kayt#\ $'(DEmn:;=>BCGIade   8!I!T!W!]!!!!!!!!!! """<"="K"L"##ҿҿҿҿҿҿҿҿҧҧҧҿҿҿҿҿҧҧҧҿҿҿҿҿҧ/hI_h#\6B*CJKHOJQJ]^Jph%hI_h#\B*CJKHOJQJph)hI_h#\B*CJKHOJQJ^Jph/hI_h#\5B*CJKHOJQJ\^JphB(7DEmn:R;kd$$IfK 634Kayt#\Nkdu$$IfK0   634Kayt#\$dh$1$Ifa$gd#\$dh$1$Ifa$gd#\:;=>dev:;kd $$IfK 634Kayt#\;kd$$IfK 634Kayt#\$dh$1$Ifa$gd#\;kdG$$IfK 634Kayt#\eR;kd$$IfK 634Kayt#\Nkdj$$IfK0   634Kayt#\$dh$1$Ifa$gd#\$dh$1$Ifa$gd#\v:;kd$$IfK 634Kayt#\;kd$$IfK 634Kayt#\$dh$1$Ifa$gd#\;kd<$$IfK 634Kayt#\  !R;kd$$IfK 634Kayt#\Nkd_$$IfK0   634Kayt#\$dh$1$Ifa$gd#\$dh$1$Ifa$gd#\!!!!""v:;kd$$IfK 634Kayt#\;kd$$IfK 634Kayt#\$dh$1$Ifa$gd#\;kd1$$IfK 634Kayt#\"0"<"="K"L"V$R;kd$$IfK 634Kayt#\NkdT$$IfK0   634Kayt#\$dh$1$Ifa$gd#\$dh$1$Ifa$gd#\###$U$V$W$Y$Z$^$_$c$e$|$$$$$$$R&_&j&l&o&&&&&&&&&&&&&'';'<' )<)=)>)@)A)E)F)K)M)h)k)l)))))+++++++++꿧꿧꿧꿧/hI_h#\5B*CJKHOJQJ\^Jph%hI_h#\B*CJKHOJQJph/hI_h#\6B*CJKHOJQJ]^Jph)hI_h#\B*CJKHOJQJ^JphBV$W$Y$Z$$$v:;kd$$IfK 634Kayt#\;kd$$IfK 634Kayt#\$dh$1$Ifa$gd#\;kd&$$IfK 634Kayt#\$$$$$$&R;kd$$IfK 634Kayt#\NkdI$$IfK0   634Kayt#\$dh$1$Ifa$gd#\$dh$1$Ifa$gd#\&&&&&&v:;kd$$IfK 634Kayt#\;kd|$$IfK 634Kayt#\$dh$1$Ifa$gd#\;kd$$IfK 634Kayt#\&''';'<'=)R;kd$$IfK 634Kayt#\Nkd>$$IfK0   634Kayt#\$dh$1$Ifa$gd#\$dh$1$Ifa$gd#\=)>)@)A)k)l)v:;kd$$IfK 634Kayt#\;kdq$$IfK 634Kayt#\$dh$1$Ifa$gd#\;kd$$IfK 634Kayt#\l)t)))))+R;kd$$IfK 634Kayt#\Nkd3$$IfK0   634Kayt#\$dh$1$Ifa$gd#\$dh$1$Ifa$gd#\++++++v:;kd$$IfK 634Kayt#\;kdf$$IfK 634Kayt#\$dh$1$Ifa$gd#\;kd$$IfK 634Kayt#\+++++++,,-.....#.$.).+.F.I.J.^._...l00000000000000011~222222222222222 3 3=3>344444/hI_h#\6B*CJKHOJQJ]^Jph%hI_h#\B*CJKHOJQJph/hI_h#\5B*CJKHOJQJ\^Jph)hI_h#\B*CJKHOJQJ^JphB++++,,.R;kd$$IfK 634Kayt#\Nkd($$IfK0   634Kayt#\$dh$1$Ifa$gd#\$dh$1$Ifa$gd#\....I.J.v:;kd$$IfK 634Kayt#\;kd[$$IfK 634Kayt#\$dh$1$Ifa$gd#\;kd$$IfK 634Kayt#\J.R.^._...0R;kd$$IfK 634Kayt#\Nkd$$IfK0   634Kayt#\$dh$1$Ifa$gd#\$dh$1$Ifa$gd#\000000v:;kd$$IfK 634Kayt#\;kdP$$IfK 634Kayt#\$dh$1$Ifa$gd#\;kd$$IfK 634Kayt#\0000112R;kd $$IfK 634Kayt#\Nkd $$IfK0   634Kayt#\$dh$1$Ifa$gd#\$dh$1$Ifa$gd#\222222v:;kd!$$IfK 634Kayt#\;kdE!$$IfK 634Kayt#\$dh$1$Ifa$gd#\;kd $$IfK 634Kayt#\22 3 3=3>34R;kdx"$$IfK 634Kayt#\Nkd"$$IfK0   634Kayt#\$dh$1$Ifa$gd#\$dh$1$Ifa$gd#\444455v:;kd#$$IfK 634Kayt#\;kd:#$$IfK 634Kayt#\$dh$1$Ifa$gd#\;kd"$$IfK 634Kayt#\444444445557585b5c56666666666666667"8-8/868C8U8W8d8f8s88888888888888899,:9:K:M:Z:\:i::::׿׿׿׿קקקקקק׿׿קקקק/hI_h#\6B*CJKHOJQJ]^Jph/hI_h#\5B*CJKHOJQJ\^Jph)hI_h#\B*CJKHOJQJ^Jph%hI_h#\B*CJKHOJQJphB5(57585b5c56R;kdm$$$IfK 634Kayt#\Nkd#$$IfK0   634Kayt#\$dh$1$Ifa$gd#\$dh$1$Ifa$gd#\666666v:;kd%$$IfK 634Kayt#\;kd/%$$IfK 634Kayt#\$dh$1$Ifa$gd#\;kd$$$IfK 634Kayt#\6666668R;kdb&$$IfK 634Kayt#\Nkd%$$IfK0   634Kayt#\$dh$1$Ifa$gd#\$dh$1$Ifa$gd#\888888v:;kd'$$IfK 634Kayt#\;kd$'$$IfK 634Kayt#\$dh$1$Ifa$gd#\;kd&$$IfK 634Kayt#\888899:R;kdW($$IfK 634Kayt#\Nkd'$$IfK0   634Kayt#\$dh$1$Ifa$gd#\$dh$1$Ifa$gd#\::::::v:;kdz)$$IfK 634Kayt#\;kd)$$IfK 634Kayt#\$dh$1$Ifa$gd#\;kd($$IfK 634Kayt#\::::::::::::::;;;;;;;<!<R<S<T<V<W<[<\<a<c<<<<<<<<=====>#>%>,>M>Y>o>p>q>s>t>x>y>}>>>>>>>>>@׿׿׿/hI_h#\6B*CJKHOJQJ]^Jph/hI_h#\5B*CJKHOJQJ\^Jph%hI_h#\B*CJKHOJQJph)hI_h#\B*CJKHOJQJ^JphB::::::S<R;kdL*$$IfK 634Kayt#\Nkd)$$IfK0   634Kayt#\$dh$1$Ifa$gd#\$dh$1$Ifa$gd#\S<T<V<W<<<v:;kdo+$$IfK 634Kayt#\;kd+$$IfK 634Kayt#\$dh$1$Ifa$gd#\;kd*$$IfK 634Kayt#\<<<<<<p>R;kdA,$$IfK 634Kayt#\Nkd+$$IfK0   634Kayt#\$dh$1$Ifa$gd#\$dh$1$Ifa$gd#\p>q>s>t>>>v:;kdd-$$IfK 634Kayt#\;kd-$$IfK 634Kayt#\$dh$1$Ifa$gd#\;kd,$$IfK 634Kayt#\>>>>>>AR;kd6.$$IfK 634Kayt#\Nkd-$$IfK0   634Kayt#\$dh$1$Ifa$gd#\$dh$1$Ifa$gd#\@AAAAAAAAAUAXAYAAAAAAAAAAAAAAAAAABB%B&B9CCCCCCCCCCCCC D DDDDDEEEEEE!E"E&E'E+E-ENEQEҿҿҧҧҿҿҿҿҿҧҧҿҿҿҿҿҧҧҿҿҿҿҿҧҧ/hI_h#\5B*CJKHOJQJ\^Jph%hI_h#\B*CJKHOJQJph)hI_h#\B*CJKHOJQJ^Jph/hI_h#\6B*CJKHOJQJ]^JphBAAAAXAYAv:;kdY/$$IfK 634Kayt#\;kd.$$IfK 634Kayt#\$dh$1$Ifa$gd#\;kd.$$IfK 634Kayt#\YApAAAAAAR;kd+0$$IfK 634Kayt#\Nkd/$$IfK0   634Kayt#\$dh$1$Ifa$gd#\$dh$1$Ifa$gd#\AAAAAAv:;kdN1$$IfK 634Kayt#\;kd0$$IfK 634Kayt#\$dh$1$Ifa$gd#\;kd0$$IfK 634Kayt#\ABBB%B&BCR;kd 2$$IfK 634Kayt#\Nkd1$$IfK0   634Kayt#\$dh$1$Ifa$gd#\$dh$1$Ifa$gd#\CCCCCCv:;kdC3$$IfK 634Kayt#\;kd2$$IfK 634Kayt#\$dh$1$Ifa$gd#\;kd2$$IfK 634Kayt#\CC D DDDER;kd4$$IfK 634Kayt#\Nkd3$$IfK0   634Kayt#\$dh$1$Ifa$gd#\$dh$1$Ifa$gd#\EE!E"EQEREv:;kd85$$IfK 634Kayt#\;kd4$$IfK 634Kayt#\$dh$1$Ifa$gd#\;kdv4$$IfK 634Kayt#\QERExEyEEEF-F8F;FAFPFQFRFTFUFYFZF^F`FwFzF{FFFFFGGGGGHHHHHHH!H#HLHOHPHvHwHHHIIIIIIJJJJ J J6J9J:J`JaJoJpJ׿׿׿קק׿׿׿קק׿׿קק/hI_h#\5B*CJKHOJQJ\^Jph/hI_h#\6B*CJKHOJQJ]^Jph)hI_h#\B*CJKHOJQJ^Jph%hI_h#\B*CJKHOJQJphBREjExEyEEEQFR;kd 6$$IfK 634Kayt#\Nkd5$$IfK0   634Kayt#\$dh$1$Ifa$gd#\$dh$1$Ifa$gd#\QFRFTFUFzF{Fv:;kd-7$$IfK 634Kayt#\;kd6$$IfK 634Kayt#\$dh$1$Ifa$gd#\;kdk6$$IfK 634Kayt#\{FFFFFFHR;kd7$$IfK 634Kayt#\Nkd7$$IfK0   634Kayt#\$dh$1$Ifa$gd#\$dh$1$Ifa$gd#\HHHHOHPHv:;kd"9$$IfK 634Kayt#\;kd8$$IfK 634Kayt#\$dh$1$Ifa$gd#\;kd`8$$IfK 634Kayt#\PHhHvHwHHHIR;kd9$$IfK 634Kayt#\Nkd9$$IfK0   634Kayt#\$dh$1$Ifa$gd#\$dh$1$Ifa$gd#\IIJJ9J:Jv:;kd;$$IfK 634Kayt#\;kd:$$IfK 634Kayt#\$dh$1$Ifa$gd#\;kdU:$$IfK 634Kayt#\:JRJ`JaJoJpJJR;kd;$$IfK 634Kayt#\Nkdx;$$IfK0   634Kayt#\$dh$1$Ifa$gd#\$dh$1$Ifa$gd#\pJJJJJJJJJJJJJJJJKKALOLaLbLdLeLiLjLnLpLLLLLLLLLLLLMMMM'M*M+MOMPM]M^MgNtNNNNNNNNNNNNNNO O꿧꿧꿧꿧/hI_h#\5B*CJKHOJQJ\^Jph%hI_h#\B*CJKHOJQJph/hI_h#\6B*CJKHOJQJ]^Jph)hI_h#\B*CJKHOJQJ^JphBJJJJJJv:;kd =$$IfK 634Kayt#\;kd<$$IfK 634Kayt#\$dh$1$Ifa$gd#\;kdJ<$$IfK 634Kayt#\JJJJKKaLR;kd=$$IfK 634Kayt#\Nkdm=$$IfK0   634Kayt#\$dh$1$Ifa$gd#\$dh$1$Ifa$gd#\aLbLdLeLLLv:;kd?$$IfK 634Kayt#\;kd>$$IfK 634Kayt#\$dh$1$Ifa$gd#\;kd?>$$IfK 634Kayt#\LLLLLLLR;kd?$$IfK 634Kayt#\Nkdb?$$IfK0   634Kayt#\$dh$1$Ifa$gd#\$dh$1$Ifa$gd#\LLLL*M+Mv:;kd@$$IfK 634Kayt#\;kd@$$IfK 634Kayt#\$dh$1$Ifa$gd#\;kd4@$$IfK 634Kayt#\+MAMOMPM]M^MNR;kdA$$IfK 634Kayt#\NkdWA$$IfK0   634Kayt#\$dh$1$Ifa$gd#\$dh$1$Ifa$gd#\NNNNNNv:;kdB$$IfK 634Kayt#\;kdB$$IfK 634Kayt#\$dh$1$Ifa$gd#\;kd)B$$IfK 634Kayt#\NNO OOOPR;kdC$$IfK 634Kayt#\NkdLC$$IfK0   634Kayt#\$dh$1$Ifa$gd#\$dh$1$Ifa$gd#\ OOOOOPPPPPPPPP P?PBPCPXPYPPPQQQQQQRR#R&R'R?R@RRRSSSTקק׏w/hI_h#\5B*CJKHOJQJ\^Jph/hI_h#\5B*CJKHOJQJ^Jo(ph/hI_h#\5B*CJKHOJQJ\^Jph/hI_h#\6B*CJKHOJQJ]^Jph%hI_h#\B*CJKHOJQJph)hI_h#\B*CJKHOJQJ^Jph(PPPPBPCPv:;kdD$$IfK 634Kayt#\;kdD$$IfK 634Kayt#\$dh$1$Ifa$gd#\;kdD$$IfK 634Kayt#\CPKPXPYPPPQR;kdE$$IfK 634Kayt#\NkdAE$$IfK0   634Kayt#\$dh$1$Ifa$gd#\$dh$1$Ifa$gd#\QQQQ&R'Rv:;kdF$$IfK 634Kayt#\;kdtF$$IfK 634Kayt#\$dh$1$Ifa$gd#\;kdF$$IfK 634Kayt#\'R/R?R@RRRSR;kdG$$IfK 634Kayt#\Nkd6G$$IfK0   634Kayt#\$dh$1$Ifa$gd#\$dh$1$Ifa$gd#\SSS UUVnX/YyZ:[[\/^ _0aIb[c[ewf$dh1$9Da$gd#\$dh-D1$M a$gd#\;kdH$$IfK 634Kayt#\T U4UUVV(WnXX/YRYyZZ:[;[[[[[[[[[[ \\]/^]^ _B_0ajaIbb[c\cccccc긞긄j2jIhI_h#\B*CJKHOJQJU^Jph2j IhI_h#\B*CJKHOJQJU^Jph2jiHhI_h#\B*CJKHOJQJU^Jph2jhI_h#\B*CJKHOJQJU^Jph/hI_h#\5B*CJKHOJQJ\^Jph)hI_h#\B*CJKHOJQJ^Jph)cccccc4d[eewff^g_gggggghhEjajkkllmmRo{opqr sssssst w w5wџџџџџџџџџџkџџ2jKhI_h#\B*CJKHOJQJU^Jph2jJhI_h#\B*CJKHOJQJU^Jph/hI_h#\5B*CJKHOJQJ\^Jph2jOJhI_h#\B*CJKHOJQJU^Jph)hI_h#\B*CJKHOJQJ^Jph2jhI_h#\B*CJKHOJQJU^Jph*wf^ghEjklmRoprsssPwy^yyzzL{K4;RЉ$dh1$9Da$gd#\5w6wLwMwPwwy?y^yyyyzzz-{L{{{{K#4~΄;RωFFѹѹѹѹѹѹѹўѹчѹѹѹѹѹsqsU&h#\B*CJKHOJQJ^Jo(ph,hI_h#\B*CJKHOJQJ^Jo(ph5hI_h#\56B*CJKHOJQJ\]^Jph/hI_h#\5B*CJKHOJQJ\^Jph)hI_h#\B*CJKHOJQJ^Jph2jhI_h#\B*CJKHOJQJU^Jph& N06'Yf[vYePgSSfNOo` 1. Biomedical Engineering: Bridging Medicine and Technology, in preparation by Mark Saltzman (forthcoming by Cambridge University Press) 2. Wolfson and Pasachoff, Physics with Modern Physics, 3. The Origins of the Future Ten Questions for the Next Ten Years John Gribbin 4. Geoarchaeology  The Earth-Science Approach to Archaeological Interpretation, Second Edition George (Rip) Rapp and Christopher L. Hill FFF F$F&FF0G8GhGGGGGG$H&H>HDHbHfHHHPIRIĵęęęęęęęhhH}h#\CJOJQJhH}h#\0JCJOJQJhH}h#\0JCJOJQJhH}h#\CJOJQJo(/hdh#\B*CJKH$OJQJ\^Jo(ph)h#\B*CJKH$OJQJ\^Jo(phЉ F4GG@HRIgd#\$dh1$9Da$gd#\0182P. A!"#$%S _$$If!vh5!#v!:V K6,534Kyt#\_$$If!vh5!#v!:V K6,534Kyt#\o$$If!vh55/#v#v/:V K65 5 34Kyt#\_$$If!vh5!#v!:V K6,534Kyt#\_$$If!vh5!#v!:V K6,534Kyt#\_$$If!vh5!#v!:V K6,534Kyt#\_$$If!vh5!#v!:V K6,534Kyt#\o$$If!vh55/#v#v/:V K65 5 34Kyt#\_$$If!vh5!#v!:V K6,534Kyt#\_$$If!vh5!#v!:V K6,534Kyt#\_$$If!vh5!#v!:V K6,534Kyt#\_$$If!vh5!#v!:V K6,534Kyt#\o$$If!vh55/#v#v/:V K65 5 34Kyt#\_$$If!vh5!#v!:V K6,534Kyt#\_$$If!vh5!#v!:V K6,534Kyt#\_$$If!vh5!#v!:V K6,534Kyt#\_$$If!vh5!#v!:V K6,534Kyt#\o$$If!vh55/#v#v/:V K65 5 34Kyt#\_$$If!vh5!#v!:V K6,534Kyt#\_$$If!vh5!#v!:V K6,534Kyt#\_$$If!vh5!#v!:V K6,534Kyt#\_$$If!vh5!#v!:V K6,534Kyt#\o$$If!vh55/#v#v/:V K65 5 34Kyt#\_$$If!vh5!#v!:V K6,534Kyt#\_$$If!vh5!#v!:V K6,534Kyt#\_$$If!vh5!#v!:V K6,534Kyt#\_$$If!vh5!#v!:V K6,534Kyt#\o$$If!vh55/#v#v/:V K65 5 34Kyt#\_$$If!vh5!#v!:V K6,534Kyt#\_$$If!vh5!#v!:V K6,534Kyt#\_$$If!vh5!#v!:V K6,534Kyt#\_$$If!vh5!#v!:V K6,534Kyt#\o$$If!vh55/#v#v/:V K65 5 34Kyt#\_$$If!vh5!#v!:V K6,534Kyt#\_$$If!vh5!#v!:V K6,534Kyt#\_$$If!vh5!#v!:V K6,534Kyt#\_$$If!vh5!#v!:V K6,534Kyt#\o$$If!vh55/#v#v/:V K65 5 34Kyt#\_$$If!vh5!#v!:V K6,534Kyt#\_$$If!vh5!#v!:V K6,534Kyt#\_$$If!vh5!#v!:V K6,534Kyt#\_$$If!vh5!#v!:V K6,534Kyt#\o$$If!vh55/#v#v/:V K65 5 34Kyt#\_$$If!vh5!#v!:V K6,534Kyt#\_$$If!vh5!#v!:V K6,534Kyt#\_$$If!vh5!#v!:V K6,534Kyt#\_$$If!vh5!#v!:V K6,534Kyt#\o$$If!vh55/#v#v/:V K65 5 34Kyt#\_$$If!vh5!#v!:V K6,534Kyt#\_$$If!vh5!#v!:V K6,534Kyt#\_$$If!vh5!#v!:V K6,534Kyt#\_$$If!vh5!#v!:V K6,534Kyt#\o$$If!vh55/#v#v/:V K65 5 34Kyt#\_$$If!vh5!#v!:V K6,534Kyt#\_$$If!vh5!#v!:V K6,534Kyt#\_$$If!vh5!#v!:V K6,534Kyt#\_$$If!vh5!#v!:V K6,534Kyt#\o$$If!vh55/#v#v/:V K65 5 34Kyt#\_$$If!vh5!#v!:V K6,534Kyt#\_$$If!vh5!#v!:V K6,534Kyt#\_$$If!vh5!#v!:V K6,534Kyt#\_$$If!vh5!#v!:V K6,534Kyt#\o$$If!vh55/#v#v/:V K65 5 34Kyt#\_$$If!vh5!#v!:V K6,534Kyt#\_$$If!vh5!#v!:V K6,534Kyt#\_$$If!vh5!#v!:V K6,534Kyt#\_$$If!vh5!#v!:V K6,534Kyt#\o$$If!vh55/#v#v/:V K65 5 34Kyt#\_$$If!vh5!#v!:V K6,534Kyt#\_$$If!vh5!#v!:V K6,534Kyt#\_$$If!vh5!#v!:V K6,534Kyt#\_$$If!vh5!#v!:V K6,534Kyt#\o$$If!vh55/#v#v/:V K65 5 34Kyt#\_$$If!vh5!#v!:V K6,534Kyt#\_$$If!vh5!#v!:V K6,534Kyt#\_$$If!vh5!#v!:V K6,534Kyt#\_$$If!vh5!#v!:V K6,534Kyt#\o$$If!vh55/#v#v/:V K65 5 34Kyt#\_$$If!vh5!#v!:V K6,534Kyt#\_$$If!vh5!#v!:V K6,534Kyt#\_$$If!vh5!#v!:V K6,534Kyt#\_$$If!vh5!#v!:V K6,534Kyt#\o$$If!vh55/#v#v/:V K65 5 34Kyt#\_$$If!vh5!#v!:V K6,534Kyt#\_$$If!vh5!#v!:V K6,534Kyt#\_$$If!vh5!#v!:V K6,534Kyt#\_$$If!vh5!#v!:V K6,534Kyt#\o$$If!vh55/#v#v/:V K65 5 34Kyt#\_$$If!vh5!#v!:V K6,534Kyt#\_$$If!vh5!#v!:V K6,534Kyt#\_$$If!vh5!#v!:V K6,534Kyt#\_$$If!vh5!#v!:V K6,534Kyt#\o$$If!vh55/#v#v/:V K65 5 34Kyt#\_$$If!vh5!#v!:V K6,534Kyt#\_$$If!vh5!#v!:V K6,534Kyt#\_$$If!vh5!#v!:V K6,534Kyt#\_$$If!vh5!#v!:V K6,534Kyt#\o$$If!vh55/#v#v/:V K65 5 34Kyt#\_$$If!vh5!#v!:V K6,534Kyt#\_$$If!vh5!#v!:V K6,534Kyt#\_$$If!vh5!#v!:V K6,534Kyt#\_$$If!vh5!#v!:V K6,534Kyt#\o$$If!vh55/#v#v/:V K65 5 34Kyt#\_$$If!vh5!#v!:V K6,534Kyt#\_$$If!vh5!#v!:V K6,534Kyt#\_$$If!vh5!#v!:V K6,534Kyt#\_$$If!vh5!#v!:V K6,534Kyt#\o$$If!vh55/#v#v/:V K65 5 34Kyt#\_$$If!vh5!#v!:V K6,534Kyt#\_$$If!vh5!#v!:V K6,534Kyt#\_$$If!vh5!#v!:V K6,534Kyt#\_$$If!vh5!#v!:V K6,534Kyt#\o$$If!vh55/#v#v/:V K65 5 34Kyt#\_$$If!vh5!#v!:V K6,534Kyt#\_$$If!vh5!#v!:V K6,534Kyt#\_$$If!vh5!#v!:V K6,534Kyt#\_$$If!vh5!#v!:V K6,534Kyt#\o$$If!vh55/#v#v/:V K65 5 34Kyt#\_$$If!vh5!#v!:V K6,534Kyt#\_$$If!vh5!#v!:V K6,534Kyt#\_$$If!vh5!#v!:V K6,534Kyt#\_$$If!vh5!#v!:V K6,534Kyt#\o$$If!vh55/#v#v/:V K65 5 34Kyt#\_$$If!vh5!#v!:V K6,534Kyt#\_$$If!vh5!#v!:V K6,534Kyt#\_$$If!vh5!#v!:V K6,534Kyt#\_$$If!vh5!#v!:V K6,534Kyt#\o$$If!vh55/#v#v/:V K65 5 34Kyt#\_$$If!vh5!#v!:V K6,534Kyt#\_$$If!vh5!#v!:V K6,534Kyt#\_$$If!vh5!#v!:V K6,534Kyt#\_$$If!vh5!#v!:V K6,534Kyt#\o$$If!vh55/#v#v/:V K65 5 34Kyt#\_$$If!vh5!#v!:V K6,534Kyt#\_$$If!vh5!#v!:V K6,534Kyt#\_$$If!vh5!#v!:V K6,534Kyt#\_$$If!vh5!#v!:V K6,534Kyt#\o$$If!vh55/#v#v/:V K65 5 34Kyt#\_$$If!vh5!#v!:V K6,534Kyt#\_$$If!vh5!#v!:V K6,534Kyt#\_$$If!vh5!#v!:V K6,534Kyt#\_$$If!vh5!#v!:V K6,534Kyt#\o$$If!vh55/#v#v/:V K65 5 34Kyt#\_$$If!vh5!#v!:V K6,534Kyt#\_$$If!vh5!#v!:V K6,534Kyt#\_$$If!vh5!#v!:V K6,534Kyt#\_$$If!vh5!#v!:V K6,534Kyt#\o$$If!vh55/#v#v/:V K65 5 34Kyt#\_$$If!vh5!#v!:V K6,534Kyt#\_$$If!vh5!#v!:V K6,534Kyt#\_$$If!vh5!#v!:V K6,534Kyt#\_$$If!vh5!#v!:V K6,534Kyt#\o$$If!vh55/#v#v/:V K65 5 34Kyt#\_$$If!vh5!#v!:V K6,534Kyt#\_$$If!vh5!#v!:V K6,534Kyt#\_$$If!vh5!#v!:V K6,534Kyt#\_$$If!vh5!#v!:V K6,534Kyt#\o$$If!vh55/#v#v/:V K65 5 34Kyt#\_$$If!vh5!#v!:V K6,534Kyt#\_$$If!vh5!#v!:V K6,534Kyt#\_$$If!vh5!#v!:V K6,534Kyt#\_$$If!vh5!#v!:V K6,534Kyt#\o$$If!vh55/#v#v/:V K65 5 34Kyt#\_$$If!vh5!#v!:V K6,534Kyt#\_$$If!vh5!#v!:V K6,534Kyt#\_$$If!vh5!#v!:V K6,534Kyt#\_$$If!vh5!#v!:V K6,534Kyt#\o$$If!vh55/#v#v/:V K65 5 34Kyt#\_$$If!vh5!#v!:V K6,534Kyt#\_$$If!vh5!#v!:V K6,534Kyt#\_$$If!vh5!#v!:V K6,534Kyt#\_$$If!vh5!#v!:V K6,534Kyt#\o$$If!vh55/#v#v/:V K65 5 34Kyt#\_$$If!vh5!#v!:V K6,534Kyt#\_$$If!vh5!#v!:V K6,534Kyt#\_$$If!vh5!#v!:V K6,534Kyt#\_$$If!vh5!#v!:V K6,534Kyt#\o$$If!vh55/#v#v/:V K65 5 34Kyt#\_$$If!vh5!#v!:V K6,534Kyt#\_$$If!vh5!#v!:V K6,534Kyt#\_$$If!vh5!#v!:V K6,534Kyt#\_$$If!vh5!#v!:V K6,534Kyt#\o$$If!vh55/#v#v/:V K65 5 34Kyt#\_$$If!vh5!#v!:V K6,534Kyt#\_$$If!vh5!#v!:V K6,534Kyt#\Dd V  c 2 oopixelDd V  c 2   pixelDd V  c 2 oopixelDd V  c 2 ԔԔpixelDd V  c 2 oopixelDdr <P  3 3"((J`J #\cke $1$a$ CJKH_HaJmH nHsH tH$A@$ ؞k=W[SOBi@B nfh*CJOJQJS*Y(^JaJo(ph"X`" #\:_6].o. #\ txt-smlcapsy N+oB vQghjk       ) * !"-.'(7DEmn:;=>de0<=KLVWYZ;<=>@Aklt!!!!!!!!!""$$$$I$J$R$^$_$$$&&&&&&&&&''((((((( ) )=)>)****++(+7+8+b+c+,,,,,,,,,,,.........//00000000000S2T2V2W22222222p4q4s4t444444447777X7Y7p77777777777888%8&89999999 : :::;;!;";Q;R;j;x;y;;;Q<R<T<U<z<{<<<<<<>>>>O>P>h>v>w>>>??@@9@:@R@`@a@o@p@@@@@@@@@@AAaBbBdBeBBBBBBBBBBBB*C+CACOCPC]C^CDDDDDDDE EEEFFFFBFCFKFXFYFFFGGGG&H'H/H?H@HHHIII KKLnN/OyP:QQR/T U0WIX[Y[[w\^]^E`abcRefhiiiPmo^ooppLqKvww4yzz;{R}j{@0@0@0@0@0@0@0@0@0@0@0@0@0@0@0@0@0@0@0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0@0@0@0@0@0@0@0@0@0@0@0@0@0@0@0@0@0@0@0@0@0@0@0@0@0@0@0@0@0@0@0@0@0@0@0@0@0@0@0@0@0@0@0@0@0@0@0@0X00+oB vQghjk       ) * !"-.'(7DEmn:;=>de0<=KLVWYZ;<=>@Aklt!!!!!!!!!""$$$$I$J$R$^$_$$$&&&&&&&&&''((((((( ) )=)>)****++(+7+8+b+c+,,,,,,,,,,,.........//00000000000S2T2V2W22222222p4q4s4t444444447777X7Y7p77777777777888%8&89999999 : :::;;!;";Q;R;j;x;y;;;Q<R<T<U<z<{<<<<<<>>>>O>P>h>v>w>>>??@@9@:@R@`@a@o@p@@@@@@@@@@AAaBbBdBeBBBBBBBBBBBB*C+CACOCPC]C^CDDDDDDDE EEEFFFFBFCFKFXFYFFFGGGG&H'H/H?H@HHHIII KKLnN/OyP:QQR/T U0WIX[Y[[w\^]^E`abcRefhiiiPmo^ooppLqKvww4yzz;{R}j{@0m@0@0@0@0@0@0@0@0@0@0@0@0@0@0@0@0@0@0 @0 @0  @0 @0  @0 @0 @0  @0 @0  @0 @0  @0 @0  @0 @0  @0 @0 @0  @0 @0  @0 @0  @0 @0  @0 @0  @0 @0 @0  @0 @0  @0 @0  @0 @0  @0 @0  @0 @0 @0  @0 @0  @0 @0  @0 @0  @0 @0  @0 @0 @0  @0 @0  @0 @0  @0 @0  @0 @0  @0 @0 @0  @0 @0  @0 @0  @0 @0  @0 @0  @0 @0 @0  @0 @0  @0 @0  @0 @0  @0 @0  @0 @0 @0  @0 @0  @0 @0  @0 @0  @0 @0  @0 @0 @0  @0 @0  @0 @0  @0 @0  @0 @0  @0 @0 @0  @0 @0  @0 @0  @0 @0  @0 @0  @0 @0 @0  @0 @0  @0 @0  @0 @0  @0 @0  @0 @0 @0  @0 @0  @0 @0  @0 @0  @0 @0  @0 @0 @0  @0 @0  @0 @0  @0 @0  @0 @0  @0 @0 @0  @0 @0  @0 @0  @0 @0  @0 @0  @0 @0 @0  @0 @0  @0 @0  @0 @0  @0 @0  @0 @0 @0  @0 @0  @0 @0  @0 @0  @0 @0  @0 @0 @0  @0 @0  @0 @0  @0 @0  @0 @0  @0 @0 @0  @0 @0  @0 @0  @0 @0  @0 @0  @0 @0 @0  @0 @0  @0 @0  @0 @0  @0  @0  @0 @0  @0  @0  @0  @0  @0  @0  @0  @0  @0  @0 @0  @0  @0  @0  @0  @0  @0  @0  @0  @0  @0 @0  @0  @0  @0  @0  @0  @0  @0  @0  @0  @0 @0  @0  @0  @0  @0  @0  @0  @0  @0  @0  @0 @0  @0  @0  @0  @0  @0  @0  @0  @0  @0  @0 @0  @0  @0  @0  @0  @0  @0  @0  @0  @0  @0 @0  @0  @0  @0  @0  @0  @0  @0  @0  @0  @0 @0  @0  @0  @0  @0  @0  @0  @0  @0  @0  @0 @0  @0  @0  @0  @0  @0  @0  @0  @0  @0  @0 @0  @0  @0  @0  @0  @0  @0  @0  @0  @0  @0 @0  @0  @0  @0  @0  @0  @0  @0  @0  @0  @0 @0  @0  @0  @0  @0  @0  @0  @0  @0  @0  @0 @0  @0  @0  @0  @0  @0  @0  @0  @0  @0  @0 @0  @0  @0  @0  @0  @0  @0  @0  @0  @0  @0 @0  @0  @0  @0  @0  @0  @0  @0  @0  @0  @0 @0  @0  @0  @0  @0  @0  @0  @0  @0  @0  @0 @0  @0  @0  @0  @0  @0  @0  @0  @0  @0  @0 @0  @0  @0  @0 @0  @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0 @0  00  #+4:@QEpJ OTc5wFRIEHIQZbjsz6g(:e!"V$$&&=)l)++.J.0022456688::S<<p>>AYAAACCEREQF{FHPHI:JJJaLLL+MNNPCPQ'RSwfЉRIFJKLMNOPRSTUVWXY[\]^_`acdefghiklmnopqrtuvwxy{|}~RIG+q~bmo#@B StvOQa}:QQQQQQ[YYYYYY^]]] m5mLmyXXXXXXXXXXXXXXCCCCCX#phys060phys095phys110phys120phys150phys151phys165lphys166lphys180phys181phys200phys201phys205lphys206lphys260phys261phys295phys301phys342phys344phys382lphys401phys402phys410phys420phys430phys439phys440phys441phys448phys449phys460phys465phys471phys472k >Z!&(*,.0W2t4779";U<>@@eBBDFG{  !"k >ZlJ$&(*,.0W2t4779";U<>@@eBBDFG{m ;vw ;vw ;vx;vDx;vx;vx;vy;vDy;vy;vy;vz;vDz;vz;vz;v{;vD{;v{;v{;v|;vD|;v| ;v|!;v}";vD}#;v}$;v}%;v~&;vD~';v~(;v~);v*;vD+;v,;v-;v.;vD/;v0;vĀ1;v2;vD3;v4;vā5;v6;vD7;v8;vĂ9;v:;vD;;v<;vă=;v>;vD?;v@;vĄA;vB;vDC;vD;vąE;vF;vDG;vH;vĆI;vJ;vK;vL;vM;vDN;vO;vP;vQ;vDR;vS;vT;vU;vDV;vW;vX;vY;vDZ;v[;v\;v];vD^;v_;v`;va;vDb;vc;vd;ve;vDf;vg;vh;vi;vDj;vk;vl;vm;vDn;vo;vp;vq;vDr;vs;vt;vu;vDv;vw;vp COeF$$&(**,(.0.I.X.g..?0N0]01112\24y444S5S56666@7@77777L9[9j999; ;3<<<Z<<=??@@[BBBCzDEFIKK+K2KKvNPQR7TUQXZZZc[]^dfhfopTq]q,s,sJwJwz{      !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOQPRSTUVWXYZ\[]^_`abcdefghijklt GSiK)$&(**,,.4.M.\.k..C0R0a0111 2a2"4}444Y5Y56666F7F77778P9_9n999; ;7<@<^<<=?? @@_BBBC~DFFI*K1K4K4KKzNPQR;TUUXZ"Z"Zg[]^dfhjopXqaq1s1sRwRwz{  !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOQPRSTUVWXYZ\[]^_`abcdefghijkl urn:schemas:contactsSn(urn:schemas:contacts middlename'urn:schemas:contacts GivenNameB*urn:schemas-microsoft-com:office:smarttagscountry-region=*urn:schemas-microsoft-com:office:smarttags PlaceType=*urn:schemas-microsoft-com:office:smarttags PlaceName8C*urn:schemas-microsoft-com:office:smarttagsCity9D*urn:schemas-microsoft-com:office:smarttagsplace<m*urn:schemas-microsoft-com:office:smarttagschmetcnv d]G80111512.512015016618020020520626029530134238240140841042043944144846047150050450851552252352452553860260961063465066466566767276795adlFalseHasSpacelbNegative NumberType SourceValueTCSCTrueUnitNamem7-40/2/35m7-4,0/2/35m7-40/2/35m7-40/2/35m7-40/2/35m7-40/2/35m7140/2/35m7-40/2/35m7-40/2/35m7-40/2/35m7-40/2/35m7-40/2/35m7.4062635m7-40/2/35m7-40/2/35m7-40/2/35m7-40/2/35m7-40/2/35m714 0/2/35m714 0/2/35m7-4 0/2/35m532/0/4 7-m532/0/4 7-m532/0/4 7-m532/0/4 7-m532/0/47-m532/0/47-m532/0/47-m532/0/47-m532/0/4 7-m532/0/47-m532/0/47-m532/0/47-m532/0/4 7-m532/0/47-m532/0/47-m532/0/4 7-m532/0/4 7-m532/0/471m532/0/47-m532/0/47-DCDCm532/0/47-m532/0/47-m532/0/4 7-m532/0/4 7-DCm532/0/47-m532/0/47-m532/0/47-m532/0/47-m532/0/47-m532/0/47-m532/0/4 7-m532/0/4 7-m532/0/47-m532/0/4 7-m532/0/47-m532/0/4 7-m532/0/47-m532/0/47-m532/0/47-m532/0/4 7-m532/0/47-m532/0/47-m532/0/47-m532/0/47-m532/0/47-m532/0/47-m532/0/47-m532/0/47-m532/0/4 7-m532/0/47-m532/0/47-m532/0/47-Dm532/0/471m532/0/47-m532/0/47-m532/0/47-m532/0/47-m532/0/47-m532/0/4 7-m532/0/4!7-Dm532/0/4"7-m532/0/4#7-m532/0/4$7-Dm532/0/4%7-m532/0/4&7-m532/0/4'7-m532/0/4(7-m532/0/4)7-m532/0/4+7-DCDm532/0/4*7-*VWZ{7{  * "(7{'{cao1vSsE(yv`j}H`#\ghjk       ) * !"-.'(7DEmn:;=>de0<=KLVWYZ;<=>@Aklt!!!!!!!!!""$$$$I$J$R$^$_$$$&&&&&&&&&''((((((( ) )=)>)****++(+7+8+b+c+,,,,,,,,,,,.........//00000000000S2T2V2W22222222p4q4s4t444444447777X7Y7p77777777777888%8&89999999 : :::;;!;";Q;R;j;x;y;;;Q<R<T<U<z<{<<<<<<>>>>O>P>h>v>w>>>??@@9@:@R@`@a@o@p@@@@@@@@@@AAaBbBdBeBBBBBBBBBBBB*C+CACOCPC]C^CDDDDDDDE EEEFFFFBFCFKFXFYFFFGGGG&H'H/H?H@HHHII{@xxGxx@y@ @FUnknownG: Times New Roman5Symbol3& : Arial;[SOSimSun 1h)Ԇ)ԆS&nBS&nB!-!),.:;?]}    & 6"0000 0 0 00000 =@\]^([{  0 0 00000;[772qKX ?#\2Yale UniversityvNN0 z0YePgSSfNOo`cgcgOh+'0 ( H T `lt|0Yale Universityרҵγ̡̲ļοϢcgNormalcg1Microsoft Office Word@@8co@8coS&n՜.+,D՜.+, X`lt| nkB7'  8@ _PID_HLINKSAx ZM$9mailto:thomas.ullrich@bnl.govZV'9http://www.yale.edu/physics/research/theorynuclear.shtmlZD $9http://www.yale.edu/physics/research/theorycondmat.shtmlZ>{!7http://www.yale.edu/physics/research/quantumelec.shtmlZg1<http://www.yale.edu/physics/research/quantumcomputing.shtmlZo.<http://www.yale.edu/physics/research/historyofphysics.shtmlZ=j;http://www.yale.edu/physics/research/theoryparticles.shtmlZ2o;http://www.yale.edu/physics/research/gravitationphys.shtmlZ[9http://www.yale.edu/physics/research/exptlparticle.shtmlZj<8http://www.yale.edu/physics/research/exptlnuclear.shtmlZd. 8http://www.yale.edu/physics/research/exptlcondmat.shtmlZH 6http://www.yale.edu/physics/research/biophysics.shtmlZt>0http://www.yale.edu/physics/research/beam.shtmlZZ2http://www.yale.edu/physics/research/atomic.shtmlZn?8http://www.yale.edu/physics/research/astrophysics.shtmlZ  !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~      !"#$%&'()*+,./012346789:;<ARoot Entry F QzoCData /L1TableWordDocument2NSummaryInformation(-DocumentSummaryInformation85CompObjm  FMicrosoft Office Word ĵ MSWordDocWord.Document.89q