Material growth and optimization, fabrication of the electroluminescent devices, mainly focus on the rare-earth doped oxides and luminescent perovskites, supervise the postgraduate students.
[1] Advanced Materials 33, 2100783 (2021), Highly Efficient Pure-Blue Light-Emitting Diodes Based on Rb and Cl Alloyed Metal Halide Perovskite.
[2] Journal of Alloys and Compounds 885, 160993 (2021), Electroluminescent polycrystalline Er-doped Lu3Al5O12 nanofilms fabricated by atomic layer deposition on silicon.
[3] Applied Physics Letters 118, 141104 (2021), Highly efficient and stable electroluminescence from Er-doped Ga2O3 nanofilms fabricated by atomic layer deposition on silicon. [Featured Article]
[4] Scripta Materialia 196, 113750 (2021), Bright red electroluminescence from Al2O3/Eu2O3 nanolaminate films fabricated by atomic layer deposition on silicon.
[5] Optics Express 29(1), 37-47 (2021), Electroluminescent Y3Al5O12 nanofilms fabricated by atomic layer deposition on silicon: Using Yb as the luminescent dopant and crystallization impetus.
[6] Journal of Alloys and Compounds 832, 154964 (2020), Silicon-based electroluminescent polycrystalline Er-doped Yb3Al5O12 nanofilms fabricated by atomic layer deposition.
[7] Journal of Physics D: Applied Physics 53, 215104 (2020), Control of interaction between Tm2O3 layers in electroluminescent Al2O3/Tm2O3 nanolaminate films fabricated by atomic layer deposition.
[8] Optical Materials 107, 110125 (2020), Exploration of the green electroluminescence from Al2O3/Ho2O3 nanolaminate films fabricated by atomic layer deposition on silicon.
[9] Physica Status Solidi – RRL 13, 1900137 (2019), Energy transfer under electrical excitation and enhanced electroluminescence in the nanolaminate Yb,Er co-doped Al2O3 films.
[10] Nanomaterials 9(3), 413 (2019), Blue electroluminescent Al2O3/Tm2O3 nanolaminate films fabricated by atomic layer deposition on silicon.
[11] Optical Materials 80, 209-215 (2018), Electroluminescent Yb2O3:Er and Yb2Si2O7:Er nanolaminate films fabricated by atomic layer deposition on silicon.
[12] Scripta Materialia 151, 1-5 (2018), Near-infrared electroluminescence from atomic layer doped Al2O3:Yb nanolaminate films on silicon.
[13] Optics Express 26(7), 9344-9352 (2018), Intense electroluminescence from atomic layer doped Al2O3/Tb2O3 nanolaminate films on silicon.
[14] Advanced Optical Materials 2, 240-244 (2014), Rare-earth doped ZnO films: a material platform to realize multicolor and near-infrared electroluminescence.
[15] Applied Physics Letters 104, 201109 (2014), Near-infrared electroluminescence from light-emitting devices based on Nd-doped TiO2/p+-Si heterostructures.
[16] Scripta Materialia 69, 748-751 (2013), Room temperature visible electroluminescence from SrTiO3/p+-Si heterostructure.
[17] AIP Advances 4, 047109 (2014), Visible and near-infrared electroluminescence from TiO2/p+-Si heterostructured device.
[18] Applied Physics Letters 102, 021108 (2013), Light-emitting devices based on erbium-doped TiO2/p+-Si heterostructures: Engineering of electroluminescence via aluminum co-doping.
[19] Applied Physics Letters 102, 181111 (2013), Low-voltage driven ~1.54 μm electroluminescence from erbium-doped ZnO/p+-Si heterostructured devices: Energy transfer from ZnO host to erbium ions.
[20] Applied Physics Letters 100, 031103 (2012), Low-voltage driven visible and infrared electroluminescence from light-emitting device based on Er-doped TiO2/p+-Si heterostructure.